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2. Desription of the sientifi ahievement

In addition to papers [H1-H5℄, some of my other papers [P1-P13℄ are also ited

in this desription. Their lists an be found in paragraphs 3.1 and 3.2. The list of

papers of other authors is given at the end of this autopresentation.

2.1. Introdution.

The mapping lass group of a ompat onneted nonorientable surfae N , de-

noted by M(N), is the group of isotopy lasses of homeomorphisms of N equal to

the identity on the boundary ∂N if it is non-empty:

M(N) = Homeo(N, ∂N)/Homeo0(N, ∂N).

Here Homeo0(N, ∂N) denotes the subgroup of Homeo(N, ∂N) onsisting of the

homeomorphisms isotopi to the identity, and by an isotopy we understand a ho-

motopy H : N × [0, 1] → N suh that H(−, t) ∈ Homeo(N, ∂N) for t ∈ [0, 1]. The
mapping lass group of a ompat onneted orientable surfae is de�ned analo-

gously as the group of isotopy lasses of orientation preserving homeomorphisms:

M(S) = Homeo+(S, ∂S)/Homeo0(S, ∂S).

When a �nite set P of points is distinguished on the surfae, then in the above

de�nition we additionally assume that all homeomorphisms permute P , and we

denote the mapping lass group by M(N,P ) or M(S, P ).
A ompat onneted surfae for whih we neither assume that it is orientable

nor nonorientable will be denoted by F , and its mapping lass group by M(F ) or
M(F, P ) in ase of distinguishes points. We will also use the notation Ng,n, Sg,n,

Fg,n for a surfae of genus g with n boundary omponents, dropping n if n = 0.
Thus Ng,n denotes a surfae homeomorphi to the onneted sum of g projetive

planes, from whih the interiors of n pairwise disjoint diss have been removed.

Mapping lass group plays a remarkably important role in low-dimensional

topology (inluding the theory of 3- and 4-dimensional manifolds), the theory of

funtions of a omplex variable, algebrai geometry and geometri group theory. It

attrats great interest of many mathematiians and is an objet of intense studies

uninterruptedly for more than �fty years. Nevertheless, there are still many open

problems related to this group.

The study of mapping lass group was initiated in the 1920s independently by M.

Dehn and J. Nielsen; but the truly dynami development of this theory begun only

in the 1960s and was propelled over the next deades by ground-breaking works

of mathematiians suh as W. B. R. Likorish, J. S. Birman, W. P. Thurston,

J. L. Harer, N. V. Ivanov, D. Johnson, B. Wajnryb. Theorems and methods

developed by these authors are to this day basi tools in this �eld. Moreover, some

of these methods, espeially those oming from Thurston, have been suessfully

applied in the study of other, related groups, like the braid group and the group

of automorphisms of a free group.

One of the reasons for the great importane of the group M(Sg) is its role

in the onstrution of the moduli spae of Riemann surfaes, where this group
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ats properly disontinuesly as the full isometry group of the Teihmüller spae

Teich(Sg), and the orbit spae M(Sg) = Teich(Sg)/M(Sg) of this ation is the

above-mentioned moduli spae of ompat Riemann surfaes of genus g (g ≥ 2), a
entral objet of the theory of funtions of a omplex variable and the theory of

algebrai urves. By allowing antyholomorphi transition funtions between harts

one obtains the notion of a dianaliti struture of Klein surfae on a nonorientable

surfae Ng. This onept was already onsidered by Klein himself. Its systemati

desription an be found in the modern monograph [1℄, and the methodology of

their study was developed in [18℄. The moduli spae M(Ng) of suh strutures

is again the orbit spae of the ation of the mapping lass group M(Ng) on the

Teihmüller spae Teich(Ng).
Every ompat Klein surfae is the orbit spae S/〈σ〉 for a unique pair (S, σ),

where S is a Riemann surfae, and σ : S → S its symmetry, that is an anty-

holomorphi involution. Under the well known funtorial bijetive orrespondene

between ompat Riemann surfaes and smooth, irreduible, omplex projetive

urves, symmetri surfaes orrespond to urves having real equations. A pair

(S, σ) is usually alled a real algebrai urve [1℄.

Sine Teich(F ) is a manifold (homeomorphi to a ball in an eulidean spae),

M(F ) has the struture of an orbifold, whose singular points orrespond to Rie-

mann or Klein surfaes having nontrivial automorphisms. The group M(F ) en-
odes most of the topologial features of the spae M(F ) and onversely, invariant

suh as the homology of M(F ) are determined by the topology of M(F ). As ex-
amples of the above relationship let us mention the proofs of simple onnetivity

of the moduli spaes of Riemann and Klein surfaes [64℄, [P1℄, Harer's theorem

[31℄ on stability of the (o)homology groups of M(S) and M(S), or the Madsen-

Weiss theorem [65℄ proving the Mumford's onjeture about the stable ohomology

groups of M(S). Analogous theorems for nonorientable surfaes were proved by

N. Wahl [82℄.

The seond, after the Teihmüller spae, fundamental objet on whih the group

M(F ) ats is the urve omplex C(F ) de�ned by Harvey [35℄. It is a simpliial

omplex, whose k-simplies are the isotopy lasses of families of k + 1 pairwise

disjoint and pairwise nonisotopi simple losed urves on F . This omplex pays a

key role in the works of Harer [31, 32℄, Ivanov [43℄ and Wahl [82℄ onerning the

(o)homology of M(F ). After the proof of the hyperboliity of C(S) by Masur and

Minsky [66℄, the study of the mapping lass group aquired a new dynamism. In

our nonorientable ase, the hyperboliity of the urve omplex C(N) was proved
by Bestvina and Fujiwara [7℄ using the work of Bowdith [12℄, and also by Masur

and Shleimer [67℄ by a di�erent method. The involvement of the authors of this

lass in the studies indiates the rank of this subjet. In the papers [H1, H5℄ we

used the ation of M(N) on the urve omplex to �nd a �nite presentation for

this group.

The �rst papers devoted entirely to the mapping lass group of a nonorientable

surfae were written already in the 1960s by Likorish [61, 62℄, Chillingworth [19℄

and Birman-Chillingworth [9℄. Then there was a thirty years long stagnation ended
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by the papers of Korkmaz [52, 53℄, and from that moment on the subjet of the

mapping lass group of a nonorientable surfae enjoys an inreasing interest.

Every nonorientable surfae N admits a overing of degree 2 by an orientable

surfae S. By the theorem of Birman and Chillingworth [9℄, the group M(N) is
isomorphi to the subgroup of M(S) of in�nite index onsisting of the elements

ommuting with the overing involution. As a onsequene of this relationship,

some properties of M(S) automatially pass to M(N) - for example all kinds

of residual properties. On the other hand, in�niteness of the index is a serious

obstale in problems suh as, for examaple, �nding a �nite presentation. Thus,

although the theorem of Birman-Chillingworth is very important, its usefulness is

rather limited. Furthermore, many results about M(S) use the orientability in a

fundamental way, so that their simple adaptation for the ase of a nonorientable

surfae is impossible and new ideas are needed.

Many important theorems aboutM(S) have got their ounterparts for a nonori-
entable surfae proven, like the above-mentioned theorems of Harer, Madsen-Weiss

and Masur-Minsky, or the no less famous theorem of Ivanov [46℄ about the auto-

morphism group of C(S), whih has been reently transplanted to nonorientable

surfaes by Atalan and Korkmaz [3℄. Until reently, one of the major exeptions

to the above rule was Wajnryb's theorem [83, 86℄ providing a simple presentation

for M(S) by generators and relations. The lak of suh a presentation for the

group M(F ) was �lled in the paper [H5℄, whih I onsider as my most important

ahievement.

I lose this introdution with a short desription of my main results obtained in

the papers [H1-H5℄, in order of their importane in my opinion.

• The papers [H1, H5℄ are devoted to the problem of �nding a �nite pre-

sentation for the groups M(Ng,n). In [H1℄ I found suh a presentation for

(g, n) = (4, 0), and in [H5℄, jointly with L. Paris, for n ∈ {0, 1} and all g
suh that g + n > 3. In the problem of obtaining �nite presentations for

M(Ng,n) the most signi�ant ase is n = 0, beause starting from a presen-

tation of M(Ng,0) one an indutively alulate presentations of M(Ng,n)
for all n by a method based on the Birman exat sequene, as in the paper

[60℄ in the ase of orientable surfaes.

• In the paper [H4℄ I desribed all nontrivial homomorphisms M(Ng) →
GL(m,C) for g ≥ 5 and m ≤ g−1. In this way I extended, to the ase of a

nonorientable surfae, the results reently obtained by J. Franks, M. Han-

del and M. Korkmaz, and ompleted the understanding of low-dimensional

linear representations of mapping lass groups of surfaes. The paper [H4℄

represents a signi�ant ontribution towards suh understanding, beause

for nonorientable surfaes the situation is more ompliated than for ori-

entable ones. As an appliation, I proved that for h < g and g ≥ 5 any

nontrivial homomorphism M(Ng) → M(Nh) has the image isomorphi to

Z2 or Z2 × Z2, where the latter ase is possible only for g ∈ {5, 6}.
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Figure 1. The urve γI for I = {i1, i2, . . . , ik}.

• The papers [H2, H3℄ are devoted to the level 2 mapping lass group, denoted

by Γ2(Ng) and de�ned as the subgroup of M(Ng) onsisting of the isotopy
lasses of homeomorphisms induing the identity on H1(Ng,Z2). In [H2℄ I

proved that Γ2(Ng) is generated by so-alled Y-homeomorphisms de�ned

by Likorish in 1963, and also that it is generated by involutions (elements

of order 2). In [H3℄ I found a �nite generating set for this group.

In the following I will desribe the above results in more detail, on the bak-

ground of works of other authors.

2.2. Presentation by generators and relations. [H1, H5℄

MCool [70℄ gave the �rst algorithm for �nding a �nite presentation for M(Sg,1)
for any g. His approah is purely algebrai and no expliit presentation has been

derived from this algorithm. In their ground-breaking paper [37℄ Hather and

Thurston gave an algorithm for omputing a �nite presentation for M(Sg,1) from
its ation on a ertain simply onneted 2-dimensional CW-omplex. By this

algorithm, Harer [30℄ obtained a �nite, but very unwieldy, presentation forM(Sg,1)
for any g. This presentation was simpli�ed by Wajnryb [83, 86℄, who also found a

presentation for M(Sg,0). Using Wajnryb's result, Matsumoto [68℄ obtained other

presentations for M(Sg,1) and M(Sg,0), and Gervais [26℄ found a presentation

for M(Sg,n) for arbitrary g ≥ 1 and n. Labruère and Paris [60℄ omputed a �nite

presentation forM(Sg,n, P ) for arbitrary g ≥ 1, n and P . Benvenuti [6℄ and Hirose

[38℄ independently reovered the Gervais presentation from the ation of M(Sg,n)
on the Harvey's urve omplex [35℄, instead of the Hather-Thurston omplex.

Before the papers [H1, H5℄ �nite presentations of M(Ng,n) were known only for

a few nonorientable surfaes of genus g ≤ 3, inluding M(N2,0) ∼= Z2×Z2 [61℄ and

M(N3,0) ∼= GL(2,Z) [9, 27℄. Using results of Likorish [61, 62℄, Chillingworth [19℄

found a �nite generating set for M(Ng,0) for all g ≥ 3. This result was extended
to nonorientable surfaes with distinguished points [53℄ and boundary [77℄.

In order to formulate the main result of the papers [H1, H5℄ let us �x a model of

a nonorientable surfae. For Ng,1 (respetively Ng,0) this will be a 2-dimensional

dis (resp. sphere), from whih g pairwise disjoint diss have been removed, and

then antipodal points have been identi�ed on eah of the resulting boundary om-

ponents, or equivalently: Möbius bands have been sewn in the plae of the removed

diss. In Figure 1 the interiors of the removed diss are shaded and numbered from

1 to g. For every nonempty subset I ⊆ {1, 2, . . . , g} let γI denote the simple losed
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Figure 2. Dehn twist about a two-sided urve γ.

i i+ 1

ui−→

Figure 3. Crossap transposition ui.

urve on N shown in Figure 1. Note that this urve is one-sided if I has odd

ardinality, and two-sided otherwise. With every two-sided simple losed urve γ
on N one an assoiate a Dehn twist about γ, that is an isotopy lass of a home-

omorphism de�ned as follows. Choose an oriented losed regular neighbourhood

A ⊂ N of the urve γ, whih we identify we the standard annulus S1 × [0, 1] (Fig.
2). Dehn twist Tγ is equal to the identity outside A, and its ation on A is as

shown in Figure 2: the interval δ is transformed into the spiral ar, aording to

the formula

Tγ(x) =

{

x for x /∈ A

(e2iπ(θ+r), r) for x = (e2iπθ, r) ∈ A = S1 × [0, 1].

For I ⊆ {1, 2, . . . , g} of even ardinality we denote by TI Dehn twist about γI in
the diretion indiated by the arrows in Figure 1. We also set:

ai = T{i,i+1} for i = 1, 2, . . . , g − 1;
bj = T{1,2,...,2j+2} for 1 ≤ j ≤ (g − 2)/2.

For i = 1, 2, . . . , g − 1 we de�ne a homeomorphism ui swapping two onseutive

Möbius bands as shown in Figure 3 and equal to the identity outside a one-holed

Klein bottle ontaining these bands. The isotopy lass of ui is denoted by the

same symbol and alled rossap transposition. Now we are ready to state the

main results of the paper [H5℄.

Twierdzenie 1 (Paris-Szepietowski [H5, Theorem 3.5℄). For g ≥ 3 the group

M(Ng,1) admits a presentation with generators ui, ai for 1 ≤ i ≤ g − 1, bj for

0 ≤ j ≤ (g − 2)/2 and relations:

(A1) aiaj = ajai for |i− j| > 1,
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Figure 4. The urves on an orientable subsurfae of genus ρ =
⌊g−1

2
⌋ de�ning the generators ai, bj .

(A2) aiai+1ai = ai+1aiai+1 for 1 ≤ i ≤ g − 2,
(A3) aib1 = b1ai for i 6= 4 if g ≥ 4,
(A4) b1a4b1 = a4b1a4 if g ≥ 5,
(A5) (a2a3a4b1)

10 = (a1a2a3a4b1)
6

if g ≥ 5,
(A6) (a2a3a4a5a6b1)

12 = (a1a2a3a4a5a6b1)
9

if g ≥ 7,
(A7) b0 = a1,
(A8) bi+1 = (bi−1a2ia2i+1a2i+2a2i+3bi)

5(bi−1a2ia2i+1a2i+2a2i+3)
−6

for 2 ≤ 2i ≤ g − 4,
(A9) b g−2

2

ag−5 = ag−5b g−2

2

if g is even and g > 6,

(A10) b2b1 = b1b2 if g = 6.

(B1) uiuj = ujui for |i− j| > 1,
(B2) uiui+1ui = ui+1uiui+1 for i = 1, . . . , g − 2.

(C1) a1ui = uia1 for i = 3, . . . , g − 1,
(C2) aiui+1ui = ui+1uiai+1 for i = 1, . . . , g − 2,
(C3) ai+1uiui+1 = uiui+1ai for i = 1, . . . , g − 2,
(C4) a1u1a1 = u1,
(C5) u2a1a2u1 = a1a2,
(C6) (u3b1)

2 = (a1a2a3)
2(u1u2u3)

2
if g ≥ 4,

(C7) u5b1 = b1u5 if g ≥ 6,
(C8) a4u4(a4a3a2a1u1u2u3u4)b1 = b1a4u4 if g ≥ 5.

Dehn twists ai, bj are de�ned by urves lying on an orientable subsurfae home-

omorphi to Sρ,r, where r ∈ {1, 2} and g = 2ρ + r (Fig. 4). These generators,

together with relations (A1-A10) onstitute a presentation of the group M(Sρ,r)
[H5, Theorem 3.1℄. If g is odd, then there are no relations (A9) and (A10), and one

an remove from the presentation the generators bj for j = 0 and j > 1 and rela-

tions (A7, A8). The remaining generators ai, i = 1, . . . , g− 1 and b1 together with
relations (A1-A6) onstitute the presentation ofM(Sρ,1) found by Matsumoto [68℄.

If g is even, then one ould also rule out bj for j 6= 1. But then in (A9, A10) b g−2

2

would have to be replaed by an expression in terms of the generators ai and b1.
Finding suh an expliit expression would onsiderably simplify our presentation.

The generators ui, i = 1, . . . , g − 1 together with relations (B1, B2) onstitute

the well known presentation of the braid group Bg. Thus Theorem 1 says that

M(Ng,1) is isomorphi to the quotient of the free produt M(Sρ,r) ∗ Bg by the
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relations (C1-C8). To obtain a presentation of M(Ng,0) we need to add three

more relations.

Twierdzenie 2 (Paris-Szepietowski [H5, Theorem 3.6℄). For g ≥ 4 the group

M(Ng,0) is isomorphi to the quotient group obtained by dividing M(Ng,1), with
the presentation given in Theorem 1, by the relations:

(B3) (u1u2 · · ·ug−1)
g = 1,

(B4) (u1u2 · · ·ug−2)
g−1 = 1.

(D) a1(a2a3 · · · ag−1ug−1 · · ·u3u2)a1 = a2a3 · · · ag−1ug−1 · · ·u3u2.

By setting g = 4 in Theorem 2 we obtain a presentation of the group M(N4,0)
di�erent from that given in [H1, Theorem 2.1℄. In [H5, Setion 4℄ we show that

these presentations are equivalent, thus performing the base step of the indutive

proof of Theorem 2. Thus we an say that the paper [H1℄ ontains a part of the

proof of Theorem 2.

The proof of Theorems 1 and 2 are indutive with respet to the genus g, with
Theorem 1 being proved under the assumption that Theorem 2 holds. The proof

of Theorem 2 uses a theorem of K.S. Brown [16℄ whih allows for omputation of

a �nite presentation of a group ating on a simply-onneted CW-omplex X by

permuting its ells, provided that:

• the stabilizer of eah vertex of X is �nitely presented;

• the stabilizer of eah edge of X is �nitely generated;

• the number of orbits of ells of dimension ≤ 2 is �nite.

We apply Brown's theorem to the ation of M(N), where N = Ng,0, g ≥ 4, on
the ordered omplex of urves Cord(N) de�ned in [6℄ similarly as Harvey's urve

omplex. Two ordered k-tuples of pairwise disjoint and unisotopi simple losed

urves on N , (γ1, γ2, . . . , γk) and (γ′1, γ
′
2, . . . , γ

′
k), are equivalent if γi and γ′i are

isotopi (as unoriented urves) for i = 1, . . . , k. Equivalene lasses of suh k-
tuples are (k − 1)-simplies of the omplex Cord(N). Obtaining a presentation of

M(N) by using its ation on Cord(N) requires a alulation of presentations of

the stabilizers of verties, hoosing one representative from eah orbit of verties.

The stabilizer Stab[γ] of a vertex [γ] is very lose to the mapping lass group of

the ompat surfae Nγ obtained by utting N along the urve γ. In partiular,

one an easily obtain a presentation of Stab[γ] from a presentation of M(Nγ),
whih an in turn be omputed reursively, as Nγ has smaller genus than N . The

situation is ompliated by the fat that Nγ has nonempty boundary, in ontrast

to N .

In [P4℄ I proposed an algorithm, based on the above-mentioned Brown's theorem,

of omputing a �nite presentation of M(N). The presentation resulting from this

algorithm is �nite but enormous; it ontains reursively omputed presentations

of stabilizers of verties of the omplex Cord(N), and many relations orresponding

to ells of dimension 1 and 2. To obtain an expliit presentation of M(N) with
reasonable numbers of generators and relations, we need to apply this algorithm

in a subtle way, so that the presentations obtained in the intermediate steps are
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not too big. In [H1℄ this was ahieved for g = 4, and the ultimate goal, that is

an expliit �nite presentation of M(Ng) for all g, was reahed in [H5℄. Thanks to

having the ase g = 4 solved in the earlier paper [H1℄, in [H5℄ we ould use the

ground-breaking idea of replaing the omplex Cord(N) by its subomplex build

only from nonseparating urves, whih is simply-onneted for g ≥ 5. In the

ase g ≥ 7 we used an even smaller subomplex, whih onsiderably redued the

presentation resulting from Brown's theorem.

Starting from the presentation of M(Ng,0) one an indutively alulate presen-

tations of M(Ng,n, P ) for arbitrary n and P by a method based on the Birman

exat sequene, as in the paper [60℄ in the ase of orientable surfaes. Finding

suh a presentation in the general ase is an interesting researh hallenge.

From the presentations given in Theorems 1 and 2 one an quite easily rule out

the generators ui for i > 1. This was done by Stukow [78℄, who obtained in this

way presentations ofM(Ng,1) andM(Ng,0) with smaller numbers of generators and

relations, and by using these presentations he omputed the �rst homology group

of M(Ng,n) with oe�ients in H1(Ng,n;Z) for n ≤ 1 [79℄. Reently, Omori posted

to the arXiv repository an interesting preprint [72℄, providing in�nite presentations

of the groups M(Ng,1) and M(Ng,0) with very simple relations. Generators in this

presentations are all Dehn twists and all Y-homeomorphisms (also alled rossap

slides and desribed below in Setion 2.4). The proof of the main result of [72℄

uses Stukow's presentation [78℄, and thus, indiretly, also Theorems 1 and 2.

It is worth adding that a presentation of M(Ng,n) with only Dehn twists as

generators is impossible. Indeed, the subgroup of M(Ng,n) generated by all Dehn

twists has index 2 [62, 76℄.

2.3. Linear representations and other homomorphisms. [H4℄

The ation of the group M(Sg,n) on H1(Sg,Z) preserves the algebrai interse-
tion pairing, whih is a sympleti form. The indued surjetive homomorphism

Φ: M(Sg,n) → Sp(2g,Z),

alled standard sympleti representation, is an important tool in the study of

the mapping lass group of an orientable surfae. In reent years, J. Franks, M.

Handel and M. Korkmaz [23, 57, 58℄ proved that for g ≥ 3 the smallest degree

of a nontrivial representation M(Sg,n) → GL(m,C) is m = 2g, and that the

standard sympleti representation is the unique, up to onjugation in C, omplex

representation of M(Sg,n) of degree 2g. In the paper [H4℄ I proved analogous

results for the mapping lass group of a non-orientable surfae.

We say that two group homomorphisms f1, f2 from G to H are onjugate if

there exists y ∈ H suh that f1(x) = yf2(x)y
−1

for all x ∈ G. The image of a

homomorphism f is denoted by Im(f).
Let us �x a double overing P : Sg−1 → Ng. By the theorem of Birman and

Chillingworth [9℄, M(Ng) is isomorphi to the subgroup of M(Sg−1) onsisting of

the orientation preserving lifts of homeomorphisms of Ng. Thus we have an ation

of M(Ng) on H1(Sg−1,Z). We denote by Kg the kernel of the homomorphism
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P∗ : H1(Sg−1,Z) → H1(Ng,Z)/Z2 indued by the overing P , where Z2 denotes

the torsion subgroup of H1(Ng,Z). The group Kg is invariant under the ation of

M(Ng) on H1(Sg−1,Z). Furthermore, Kg and H1(Sg−1,Z)/Kg are free Z-modules

of rank g − 1, and hene we obtain two representations of M(Ng) of rank g − 1

Ψ1 : M(Ng) → GL(Kg), Ψ2 : M(Ng) → GL(H1(Sg−1,Z)/Kg),

whih, after �xing bases, will be treated as homomorphisms to GL(g − 1,C). It

turns out that they are not onjugate, although ker Ψ1 = kerΨ2 [H4, Lemma

4.1℄. The �rst result of the paper [H4℄ says, that g − 1 is the smallest degree of a

nontrivial (nonabelian) representation of M(Ng).

Twierdzenie 3 (Szepietowski [H4, Theorem 1.3℄). Let n ≤ 1, g ≥ 5, m ≤ g − 2
and suppose that f : M(Ng,n) → GL(m,C) is a nontrivial homomorphism. Then

Im(f) is isomorphi either to Z2 or Z2 × Z2, and the latter ase is possible only

for g = 5 or 6.

The above result was proved by Korkmaz in [57℄ under the additional assumption

that m ≤ g − 3 if g is even. The novelty of Theorem 3 onsist in the fat that it

also overs the ase m = g−2 for even g. As an appliation of Theorem 3 I proved

the following result, whih solves Problem 3.3 in [56℄

Twierdzenie 4 (Szepietowski [H4, Theorem 1.4℄). Suppose that g ≥ 5, h < g
and f : M(Ng) → M(Nh) is a nontrivial homomorphism. Then Im(f) is as in

Theorem 3.

The analogous theorem for mapping lass groups of orientable surfaes was

proved by Harvey and Korkmaz [36℄. Theorems 3 and 4 both fail for g = 4,
as I showed that there is a homomorphism from M(N4) to M(N3) ∼= GL(2,Z),
whose image is isomorphi to the in�nite dihedral group [H4, Corollary 6.2℄. To

onstrut suh a homomorphism I used the presentation of the group M(N4) from
the papers [H1, H5℄.

Suppose that g ≥ 7. Then the abelianization of M(Ng) is isomorphi to Z2

[52℄. We denote by ab: M(Ng) → Z2 the anonial projetion and for i = 1, 2
we de�ne Ψ′

i : M(Ng) → GL(g − 1,C) by the formula Ψ′
i(x) = (−1)ab(x)Ψi(x) for

x ∈ M(Ng). The next result of the paper [H4℄ is the following.

Twierdzenie 5 (Szepietowski [H4, Theorem 1.5℄). Let g ≥ 7, g 6= 8 and sup-

pose that f : M(Ng) → GL(g − 1,C) is a nontrivial homomorphism. Then either

Im(f) ∼= Z2, or f is onjugate to one of the homomorphisms Ψ1, Ψ
′
1, Ψ2, Ψ

′
2.

For g = 8 I proved analogous theorem [H4, Theorem 1.6℄. In this ase we have an

additional homomorphism M(N8) → GL(7,C) related to the fat that there is an

epimorphism fromM(N8) onto Sp(6,Z2), and the last group admits an irreduible

representation in GL(7,C).

2.4. Level 2 mapping lass group. [H2, H3℄

By omposing the standard sympleti representation of the group M(Sg) with
the homomorphism of redution modulo m, for some natural m ≥ 2, we obtain a
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surjetive representation M(Sg) → Sp(2g,Zm), whose kernel is denoted by Γm(Sg)
and alled level m mapping lass group of the surfae Sg. The group Γm(Sg) may

also be desribed as the group of isotopy lasses of homeomorphisms of Sg induing

the identity on H1(Sg,Zm). Summarising, we have an exat sequene

1 → Γm(Sg) → M(Sg) → Sp(2g,Zm) → 1.

The groups Γm(Sg) have been intensively studied, among others by Hain [29℄ and

Ivanov [45℄, and from more reent results it is worth mentioning the omputation

of their abelianization [74, 75℄.

In the ase of a nonorientable surfae Ng, the algebrai intersetion pairing

on H1(Ng,Z) is de�ned only modulo 2. For this reason it is very natural to

onsider the ation of M(Ng) on H1(Ng,Z2) and its kernel Γ2(Ng). The group of

automorphisms ofH1(Ng,Z2) preserving the algebrai intersetion form is denoted,

after Korkmaz [52℄, by Iso(H1(Ng,Z2)). By �xing the standard basis of H1(Ng,Z2)
we have the isomorphism

Iso(H1(Ng,Z2)) ∼= {A ∈ GL(g,Z2) | AA
t = I}.

MCarthy and Pinkall [69℄, and also Gadgil and Panholi [24℄ proved that the map-

ping M(Ng) → Iso(H1(Ng,Z2)) is a surjetion. We thus have an exat sequene

1 → Γ2(Ng) → M(Ng) → Iso(H1(Ng,Z2)) → 1.

The papers [H2, H3℄ are devoted to the group Γ2(Ng). For the formulation of their

results, the notion of a Y-homeomorphism is needed.

In ontrast to M(Sg), the group M(Ng) is not generated by Dehn twists. This

was proved by Likorish [61℄, who gave the �rst example of an element of M(Ng)
whih is not a produt of Dehn twists, namely the Y-homeomorphism, also alled

rossap slide. Let g ≥ 2 and suppose that α and β are simple losed urves on

Ng, interseting in one point, and suh that α is one-sided and β two-sided. Let

K ⊂ Ng be a regular neighbourhood of α∪ β, homeomorphi to a one-holed Klein

bottle. Denote by M a regular neighbourhood of α, whih is a Möbius band. The

Y-homeomorphism Yα,β may be desribed as the e�et of pushing M one along β
keeping eah point on the boundary of K �xed, and equal to the identity outside

K (Fig.5).

α
K

β

Yα,β

Figure 5. Y-homeomorphism or rossap slide.

Likorish proved that for g ≥ 2 the group M(Ng) is generated by Dehn twists

and one Y-homeomorphism, and the subgroup generated by all Dehn twists has
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index 2 [61, 62℄. We denote by Y(Ng) the subgroup of M(Ng) generated by all

Y-homeomorphisms. It is easy to hek that every Y-homeomorphism indues the

identity on H1(Ng,Z2), and hene Y(Ng) ⊆ Γ2(Ng). In the paper [H2℄ I proved

the equality Y(Ng) = Γ2(Ng).

Twierdzenie 6 (Szepietowski [H2, Theorem 5.5℄). Let g ≥ 2. An element f ∈
M(Ng) indues the identity on H1(Ng,Z2) if and only if f is a produt of Y-

homeomorphisms.

In partiular, Y(Ng) is a proper subgroup of M(Ng) of �nite index. For I, J ⊆
{1, 2, . . . , g} we denote YγI ,γJ by YI;J , where γI , γJ are the urves from Figure

1, provided that these urves satisfy the assumptions of the de�nition of a Y-

homeomorphism. I proved that Y(Ng) is the normal losure in M(Ng) of one Y-
homeomorphism Y{1};{1,2} [H2, Lemma 3.6℄, whih is the produt of two involutions

belonging to Y(Ng). Thus I proved the following theorem.

Twierdzenie 7 (Szepietowski [H2, Theorem 3.7 i Corollary 5.7℄). For g ≥ 2 the

group Γ2(Ng) is generated by involutions.

It follows from the last theorem that the abelianization of Γ2(Ng) is a Z2-module.

Sine M(Ng) is �nitely generated, so is Γ2(Ng) as a subgroup of �nite index.

Therefore, it is a natural problem to �nd a �nite generating set for Γ2(Ng). I

solved this problem in the paper [H3℄.

Twierdzenie 8 (Szepietowski [H3, Theorem 3.2℄). For g ≥ 3, the group Γ2(Ng)
is generated by the following elements:

(1) Y{i};{i,j} for i ∈ {1, 2, . . . , g − 1}, j ∈ {1, 2, . . . , g}, i 6= j;
(2) Y{i,j,k};{i,j,k,l} for i < j < k < l, if g ≥ 4.

Let us add, for ompleteness, that Γ2(N1) = M(N1) = {1} and Γ2(N2) ∼= Z2.

In Theorem 8, every generator Y{i,j,k};{i,j,k,l} of type (2) an be replaed by

T 2
{i,j,k,l}, where T{i,j,k,l} is Dehn twist about γ{i,j,k,l} [H3, Remark 3.9℄. Note that

there are (g − 1)2 generators of type (1) and

(

g

4

)

generators of type (2). In the

�nal setion of the paper [H3℄ I proved that the number of generators of Γ2(Ng)
from Theorem 8 is minimal for g = 3 and 4. The ation of M(N3) on H1(N3,Z)
indues an isomorphism M(N3) → GL(2,Z), whih maps Γ2(N3) on the level 2
prinipal ongruene subgroup of GL(2,Z) [H3, Corollary 4.2℄. The next theorem

says that the number of generators of Γ2(N4) from Theorem 8 is equal to the rank

of the abelianization of this group, and hene is minimal.

Twierdzenie 9 (Szepietowski [H3, Theorem 4.3℄). The group H1(Γ2(N4),Z) is

isomorphi to Z10
2 .

The proof of Theorem 9 uses Theorems 7 and 8, and also the presentation of

M(N4) from the paper [H1℄. For g > 4 the generating set of Γ2(Ng) from Theorem

8 is not minimal. Hirose and Sato [41℄ showed that it ontains a subset of ardinal-

ity

(

g+1
3

)

, whih also generates Γ2(Ng), and then they proved that H1(Γ2(Ng),Z)
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has rank

(

g+1
3

)

, whih is a generalisation of the above Theorem 9. For their om-

putation of the abelianization of Γ2(Ng) Hirose and Sato use my Theorems 7 and

8.

The paper [H2℄ ontains an important onstrution of the homomorphism ross-

ap pushing map

ψ : π1(Ng−1, x0) → M(Ng),

where Ng−1 is obtained by removing from Ng a Möbius band, and gluing a dis

with a distinguished point x0 in its plae. If α ∈ π1(Ng−1, x0) is a homotopy lass

represented by a simple losed urve then ψ(α) is either a Y-homeomorphism if

α is one-sided, or a produt of two Dehn twists if α is two-sided. This allows for

obtaining relations in M(Ng) of the form

(1) ψ(αβ) = ψ(α)ψ(β),

where on eah side of the equality there are Y-homeomorphisms or Dehn twists,

provided that α, β and αβ are represented by simple urves (here the produt αβ in

π1(Ng−1, x0) means �rst β, and then α). Certain relations appearing in the �nite

presentations of the groups M(Ng) and M(Ng,1) found in the papers [H5℄ and

[78℄ were obtained in this way, by using the rossap pushing map. Furthermore,

(1) is one on the de�ning relations in Omori's in�nite presentation [72℄. The

rossap pushing map ψ is a basi tool for studying Y-homeomorphisms, used in

the papers [H2, H3℄, and also in works of other authors, inluding [42℄ and the

above-mentioned papers [72, 78℄. I believe that this tool has a big potential, as the

study of Y-homeomorphisms is an important part of the theory of the mapping

lass group of a nonorientable surfae.

The group Γ2(Ng) may be seen as ertain approximation of the Torelli subgroup

I(Ng) onsisting of the elements of M(Ng) induing the identity on H1(Ng,Z).
On the one hand this approximation is very inaurate as I(Ng) is a subgroup of

Γ2(Ng) of in�nite index. On the other hand however, the �nite generating set of

Γ2(Ng) appearing in Theorem 8 and redued in [41℄ is one of the ingredients of the

proof of the main theorem of the paper [42℄, in whih Hirose and Kobayashi found

ertain in�nite generating set of I(Ng). Their result is analogous to the lassi-

al theorem of Powell [73℄ about generators of the Torelli group of an orientable

surfae. It is worth adding that, as of now, no �nite generating set of I(Ng) is

know.

Theorems 6 and 8 have also been used in the proof of the main theorem of the

paper [40℄ providing a neessary and su�ient ondition for a homeomorphism of

a nonorientable surfae, embedded in a ertain standard way in the 4-sphere S4
,

to extend to a homeomorphism of S4
.
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Below I desribe the main results of the above papers, starting from those de-

voted stritly to mapping lass groups. Then I will desribe the papers onerning

other subjets, written in ollaboration with other mathematiians, in whih I

managed to use my experiene from the study of the mapping lass group. These

are 4 papers on topologial lassi�ation of ations of �nite groups on surfaes [P6,

P11, P12, P14℄ and one paper about the onnetivity of the branh lous of the

moduli spae of Klein surfaes [P10℄.

3.3. Finite index subgroups of the mapping lass group of a nonori-

entable surfae. [P9℄

By Grossman's theorem [28℄, the group M(Sg,n) is residually �nite, and sine

M(Ng,n) is isomorphi to a subgroup of M(Sg−1,2n), it is residually �nite as well.

This means that mapping lass groups have a rih supply of �nite index subgroups.

It is worth remarking that to every suh subgroup orresponds ertain �nite degree

overing of the appropriate moduli spae. On the other hand, A. J. Berrik, V.

Gebhardt and L. Paris [8℄ proved that for g ≥ 3 the minimum index of a proper

subgroup of M(Sg,n) is 2g−1(2g − 1). More spei�ally, it is proved in [8℄ that

M(Sg,n) ontains a unique subgroup of index m−
g = 2g−1(2g−1) up to onjugation,

a unique subgroup of index m+
g = 2g−1(2g + 1) up to onjugation, and all other

proper subgroups of M(Sg,n) have index stritly greater than m+
g (and at least

5m−
g if g ≥ 4).
For g ≥ 2 the minimum index of a proper subgroup of M(Ng,n) is 2, and if

g ≥ 7 then the subgroup generated by all Dehn twists, denoted by T (Ng,n), is the
unique subgroup of M(Ng,n) of index 2. Suppose that g ≥ 7, n ∈ {0, 1} and set

h = ⌊(g − 1)/2⌋. Let G denote either M(Ng,n) or T (Ng,n). In [P9, Theorem 1.1℄

I proved that G ontains a unique subgroup of index m−
h = 2h−1(2h − 1) up to

onjugation, a unique subgroup of index m+
h = 2h−1(2h + 1) up to onjugation,

and all other proper subgroups of G have index stritly greater than m+
h (and at

least 5m−
h if h ≥ 4). In partiular, the minimum index of a proper subgroup of

T (Ng,n) is m
−
h .

For 2 ≤ g ≤ 6 the minimum index of a proper subgroup of T (Ng,n) is 2. For

g ∈ {5, 6} I proved [P9, Theorem 4.1℄, that T (Ng,n) ontains a unique subgroup

of index 2, two subgroups of index m−
2 = 6 and one subgroup of index m+

2 = 10
up to onjugation, and all other proper subgroups of T (Ng,n) gave index greater

than 10. Sine the abelianization of T (N4,0) is isomorphi to Z × Z2 [76℄, every

positive integer is the index of some subgroup of T (N4,n).

3.4. Embeddings of the braid group in mapping lass groups. [P7℄

When two two-sided simple losed urves α, β on a surfae F do not interset,

then the orresponding Dehn twists ommute: TαTβ = TβTα; whereas if α and β
interset in one point, then the twits satisfy inM(F ) the braid relation: TαTβTα =
TβTαTβ (provided that the diretions of the twists agree at the intersetion point.

Thus, to eah hain α1, α2, . . . , αn−1 of two-sided simple losed urves on F , where
αi∩αj = ∅ for |i− j| > 1 and αi intersets αi+1 in one point for i = 1, 2, . . . , n−2,
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orresponds a homomorphism from the braid groupBn on n strands to the mapping

lass group M(F ). Suh a homomorphism is in general injetive. The paper [P7℄

was motivated by a question of B. Wajnryb [87℄ about existene of �nongeometri�

embeddings Bn → M(F ), suh that the images of the standard generators of

Bn are not Dehn twists. In the paper [P7℄ I proved that mapping the standard

generators of Bg on the rossap transpositions ui (Fig. 3), i = 1, . . . , g−1 de�nes

an embedding

ϕ : Bg → M(Ng,1).

In the same paper I extended the theorem of Birman and Chillingworth to sur-

faes with boundary by proving that M(Ng,n) is isomorphi to a subgroup of

M(Sg−1,2n), whih allowed for de�ning

ψ : Bg → M(Sg−1,2)

by lifting the ui from Ng,1 to the double over Sg−1,2. Both embeddings ϕ and

ψ have the property that the images of the standard generators of Bn are not

Dehn twists. Bödigheimer and Tillmann [11℄ proved that the embedding ψ in-

dues the zero map between the homology groups of positive degrees, as long as

the genus of the underlying surfae is large enough relative to the degree. Also the

standard geometri embeddings have this property, as well as some other nongeo-

metri embeddings of the braid group in the mapping lass group of an orientable

surfae desribed in [11℄. In ontrast, the map ϕ∗ : Hk(Bg;Z2) → Hk(M(Ng,1);Z2)
indued by the embedding ϕ is injetive for g ≥ 7 and 0 < k ≤ g/3 [11℄.

3.5. Dehn twist as a ommutator. [P5℄

The subgroup of a group G generated by all ommutators [a, b] = aba−1b−1
,

a, b ∈ G is denoted by [G,G]. For x ∈ [G,G] let clG(x) denote the smallest

number k suh that x is a produt of k ommutators, and let sclG(x) be the limit

sclG(x) = lim
n→∞

cl(xn)

n
.

The numbers clg(x) and sclG(x) are alled respetively the ommutator length and

the stable ommutator length of the element x in the group G.
Suppose that S is a losed orientable surfae of genus g ≥ 3. The mapping lass

group M(S) is perfet, i.e. [M(S),M(S)] = M(S) [73℄. Let α be a simple losed

urve on S, not ontratible to a point, and let Tα be Dehn twist about α. Then
clM(S)(Tα) = 2 [59℄ and sclM(S)(Tα) ≥

1
18g−6

[20, 54℄. In partiular, the sequene

clM(S)(T
n
α ), n ∈ Z is unbounded. The extended mapping lass group M⋄(S) is

de�ned as the group of isotopy lasses of all homeomorphisms of S, inluding
those reversing orientation. In the paper [P5℄ I proved that T n

α is equal to a single

ommutator of elements of M⋄(S) for every n ∈ Z. Hene clM⋄(S)(T
n
α ) = 1 and

sclM⋄(S)(Tα) = 0.
Suppose that N is a losed nonorientable surfae of genus g ≥ 7. Then we

have [M(N),M(N)] = T (N) = [T (N), T (N)], where T (N) is the subgroup of

M(N) of index 2 generated by all Dehn twists [52℄. In the paper [P5℄ I proved
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that clM(N)(T
n
α ) = 1 for every two-sided simple losed urve α on N and all n ∈ Z,

and under ertain additional assumptions about α and N also clT (N)(T
n
α ) = 1.

3.6. Growth funtion and density of pseudo-Anosov elements in the

mapping lass group of the projetive plane with 3 puntures. [P8℄

A group G with a �xed generating set A an be equipped with a metri alled

word metri. In this metri, the length of an element x is the minimum number

of fators needed to express x as a produt of generators from the set A. For any
subset X of G we an de�ne a power series, whose oe�ient an is equal to the

number of elements of X of length n. This series is alled growth series, and the

funtion it de�nes is alled growth funtion. Density of the set X is de�ned as the

limit

lim
n→∞

|B(n) ∩X|

|B(n)|
,

where B(n) denotes the set of elements of G of length at most n.
Let N be a nonorientable surfae with a �nite set P of distinguished points

(puntures). The pure mapping lass group PM(N,P ) is de�ned as the group of

isotopy lasses of homeomorphisms of N �xing every point of P and preserving

loal orientation in every point of P . In the paper [P8℄ I onsider the group

PM(N,P ), where (N,P ) is the projetive plane with 3 puntures, equipped with

the word metri indued by a ertain �xed generating set. I omputed the growth

funtions of the sets of reduible and pseudo-Anosov elements. These funtions

turned out to be rational. I also proved that the set of pseudo-Anosov elements

has density 1.
Analogous results were obtained in [2℄ for the sphere with 4 puntures, and in

[81℄ for the torus. The desribed results give a partial answer to Question 3.13

and on�rm Conjeture 3.15 in [22℄ in a speial ase.

3.7. Other papers devoted to the mapping lass group of a nonorientable

surfae. [P1-P4,P13℄

The paper [P1℄ ontains the main results of my master thesis, whereas the papers

[P2, P3, P4℄ are the ore of my Ph.D. thesis, although [P4℄ appeared two years

after my Ph.D.

Let Ng denote a losed nonorientable surfae of genus g ≥ 3. In the paper [P1℄

I proved that the mapping lass group M(Ng) is generated by involutions. As

an important appliation of this result, I proved simple onnetivity of the mod-

uli spae M(Ng) of Klein surfaes homeomorphi to Ng, following the proof of

simple onnetivity of the moduli spae of Riemann surfaes given by Malahlan

[64℄. In [P2℄ I proved that the group M(Ng, P ), where P is a �nite set of dis-

tinguished points on Ng, is also generated by involutions. In [P3℄ I proved that

M(Ng) is generated by three elements, and also is generated by four involutions.

The paper [P3℄ was inspired by the artiles [13, 50, 55, 84℄ ontaining similar re-

sults for the mapping lass group of an orientable surfae. In [P4℄ I proposed a

reursive algorithm for obtaining a �nite presentation of the mapping lass group
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M(Ng,n) by using its ation on the urve omplex. This algorithm was used in

the papers [H1, H5℄. In [P4℄ I found �nite presentations of the groups M(Ng,n)
for (g, n) ∈ {(1, 3), (1, 4), (2, 2), (2, 3), (3, 1)}. For these surfaes the urve omplex

is not simply onneted.

In the paper [P13℄, as yet unpublished, we proved, jointly with F. Atalan, that

if N is a losed nonorientable surfae of genus g ≥ 5 with a �nite (possibly empty)

set of distinguished points P , then every automorphism of the group M(N,P ) is
inner. Analogous theorem for the mapping lass group of an orientable surfae

is due to Ivanov [44℄. He prove that if S is an orientable surfae of genus g ≥ 3
with a �nite set of distinguished points P , then every automorphism of M(S, P )
is indued by a homeomorphism of S, not neessarily orientation preserving one.

3.8. Topologial lassi�ation of �nite group ations on ompat surafes.

[P6, P11, P12, P14℄.

By an ation of a group G on a surfae F we understand an embedding of G in

Homeo(F ), and two suh ations are alled topologially equivalent if their images

are onjugate in Homeo(F ). Classi�ation of �nite group ations on ompat

surfaes up to topologial equivalene is a lassial problem, going bak to Nielsen,

with a vast literature, espeially in the ase of orientable surfaes.

In the papers [P6, P11, P12, P14℄ we use the methods of ombinatorial theory

of noneulidean rystallographi groups, NEC groups in short, whih are disrete

and oompat subgroups of the group of isometries of the hyperboli plane H,

initiated by Mabeath [63℄. An ation of a �nite group G on a ompat surfae F
of negative Euler harateristi an be realised by an analyti or dianalyti ation,

with respet to some struture of a Riemann or Klein surfae on F . This means

that suh an ation an be de�ned by a smooth epimorphism θ : Λ → G, where
Λ is a ertain NEC group, and whose kernel is also a NEC group, torsion-free if

F is losed, or ontaining no orientation preserving isometries of �nite order if

F is a surfae with boundary. The point is, that the topology of the ation of

G is determined by algebrai features of θ and Λ. Thus, in the study of �nite

group ations we an restrit ourselves to algebra and ombinatoris, and forget

about the analyti aspets. In this language, two ations of a group G on F
are topologially equivalent if and only if the orresponding smooth epimorphisms

θi : Λi → G, i = 1, 2, �t in the ommutative diagram

(2)

Λ1
θ1−−−→ G





y

α





y

β

Λ2
θ2−−−→ G

where α and β are ertain isomorphisms. To tell if two given smooth epimorphism

Λ → G de�ne topologially equivalent ations, we thus need to know the group

of automorphisms of the NEC group Λ. At this point we use a lose relationship

between the group Out(Λ) of outer automorphisms of Λ and appropriately de-

�ned mapping lass group M(H/Λ) of the orbifold H/Λ. Knowing generators of
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M(H/Λ) we an easily obtain generators of Out(Λ), and if the order of the group

G is large enough relative to the genus of the surfae, then the groups M(H/Λ)
are Out(Λ) �nite, whih allows for an e�etive study of topologial equivalene of

group ations given by smooth epimorphisms.

The series of papers [P11, P12, P14℄ is devoted to ations of �nite yli groups

of big order on losed surfaes . At the end of the XIX entury Wiman [89℄

proved that the order of an orientation-preserving automorphism of a Riemann

surfae of genus g ≥ 2 is at most 4g + 2, and Harvey [33℄ proved that this bound

is attained for all g ≥ 2. Analogous results about the maximum orders of an

orientation-preserving periodi homeomorphism and a periodi homeomorphism of

a nonorientable surfae were obtained in the papers [17, 21, 88℄. A natural question

is to what extent the order of a periodi homeomorphism of a surfae determines

its onjugay lass. In the ase of orientation-preserving homeomorphisms of Sg it

was known that the order determines the onjugay lass, as long as this order and

the genus g are large enough [4, 39℄. In the papers [P11℄ and [P12℄ we onsider

the analogous problem respetively for homeomorphisms of Ng, g ≥ 3 and for

orientation-reversing homeomorphisms of Sg, g ≥ 2. In [P11℄ (respetively [P12℄ )

we omputed the numbers of topologially inequivalent ations of a yli group Zn

on Ng (resp. on Sg ontaining orientation-reversing homeomorphisms), depending

on the type of the orbifold Ng/Zn, for n > g − 2 (resp. Sg/Zn, for n > 2g −
2). In partiular, we proved that the ations of maximal order are unique up

to topologial equivalene, with the exeption of a non-orientable surfae of even

genus g, on whih we have two di�erent topologial types of an ation of maximal

order n = 2g. It worth emphasising that although in the theorems stated in

[P11, P12℄ we give only the numbers of topologial types of ations of big order,

in the proofs we obtain the orresponding smooth epimorphisms, and thus we

obtain their topologial lassi�ation. The paper [P14℄, in preparation, ontains

analogous lassi�ation of Zn-ations on surfaes with boundary, suh that n >
p− 2, where p is the algebrai genus of the surfae. In partiular, we lassify the

ations realizing the solutions of the so alled minimal genus and maximal order

problems for surfaes with boundary, found thirty years ago in [18℄.

In the paper [P6℄ we lassi�ed, up to topologial equivalene, all ations of

groups of �nite order at least 6 on ompat surfaes with boundary of algebrai

genus p for 2 ≤ p ≤ 6. In the ase of orientable surfaes without boundary, the

analogous lassi�ation was arried out for surfaes of genus 2 and 3 by Broughton

[15℄ and 4 by Bogopolski [10℄ and Kimura [51℄. In order to �nd all possible smooth

epimorphisms Λ → G for a given group Λ, we used here the omputer software

MAGMA. For p = 5 and 6 we obtained respetively 273 and 216 nonequivalent

ations. In [P6, Setion 3℄ we onsider also ations of groups of order smaller than

6, but they are too numerous for a omplete lassi�ation. Instead, for every group

of order at most 5 we found all topologial types of bordered surfaes of any genus

on whih this group ats. We also obtained the analogous result for all groups of

prime order.



20

As I already wrote in the introdution, to every ompat Klein surfae fun-

torially orresponds ertain projetive real algebrai urve, usually understood as

a omplex urve de�ned by a real equation. In view of this orrespondene, the

results obtained in the papers [P6, P11, P14℄ an be interpreted as a topologial

lassi�ation of �nite group ations on real urves.

3.9. Branh lous of the moduli spae of nonorientable Klein surfaes.

[P10℄

Let F be a losed surfae of negative Euler harateristi. The moduli spae

M(F ) of Riemann or Klein surfaes homeomorphi to F is the orbit spae of a

properly disontinues ation of the mapping lass group M(F ) on the Teihmüller

spae Teich(F ). Sine Teich(F ) is a manifold, homeomorphi to a ball in an eu-

lidean spae, M(F ) has the struture of an orbifold. The singular points of M(F )
orrespond to Riemann or Klein surfaes admitting nontrivial automorphisms. The

set of all singular points of M(F ) is alled branh lous and is denoted by B(F ).
The study of the branh lous B(Sg) of the moduli spae of Riemann surfaes of

genus g ≥ 2 is a lassial problem, whose history goes bak to the 1960s. The vast

literature devoted to this subjet ontains a series of papers about onnetivity of

B(Sg). The �nal result is that B(Sg) is a onneted subset of M(Sg) if and only if

g ∈ {3, 4, 7, 13, 17, 19, 59} [5℄.

In the paper [P10℄ we study the branh lous B(Ng) of losed nonorientable

Klein surfaes of genus 3 ≤ g ≤ 5. As the main result we proved that B(Ng) is
a onneted subset of M(Ng) for g = 4 and g = 5. Connetivity of B(N3) was

already known. It follows from the fat that all Klein surfaes of genus 3 are

hyperellipti, and hene they admit a nontrivial automorphism.

Similarly as in [5℄, our proof of onnetivity of B(Ng) is based on a well know

strati�ation of the moduli spae, desribed for example in [14, 34℄. With respet

to this strati�ation, B(Ng) is the union of ertain onneted subsets of M(Ng),
orresponding to topologial equivalene lasses of �nite group ations onNg. Thus

the study of onnetivity of B(Ng) is related to the subjet desribed in Setion

3.8. This researh thread should be ontinued, in order to �nd all values of g, for
whih B(Ng) is a onneted subset of M(Ng).

4. Researh plans

I lose this autopresentation with a desription of my researh plans in a long

time perspetive, fousing on the initial steps of eah partiular thread, where I

already have some quite onrete ideas and plans. I will mainly ontinue my work

on the mapping lass group of a nonorientable surfae, in the diretions partially

outlined in the desription of my sienti� ahievements. I am also thinking about

expanding my researh area to natural appliations, requiring various skills and

tools. Therefore I am ounting on a partiipation of ollaborators in the realisation

of partiular goals, having the preliminary onsent of many of them. This will

mainly be a ollaboration within the existing researh group in my home University

of Gda«sk (�rst of all G. Gromadzki and M. Stukow). The projet also assumes
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partiipation of future Ph.D. students, and its ultimate goal is the foundation

of a researh group working on a few broad subjets based on the knowledge of

mapping lass groups of surfaes.

4.1. The Torelli group of a nonorientable surfae. One of the most impor-

tant subgroups of the mapping lass group of a surfae F is the Torelli subgroup

I(F ) onsisting of the isotopy lasses of homeomorphisms induing the identity

on H1(F,Z). In the ase of an orientable surfae, the basi results and tools of

the study of the Torelli subgroup are due to D. Johnson [47, 48, 49℄. Very little

is known about the Torreli group of a nonorientable surfae. The �rst signi�ant

result about I(N) was obtained only reently by Hirose and Kobayashi [42℄, who

found ertain generating set of I(N). This set is in�nite and one of my goals will

be to �nd a �nite generating set of I(N) and to develop, in the nonorientable

setting, an analogue of Johnson's theory of the group I(S). One of the �rst spe-
i� goals will be the de�nition of �Johnson's homomorphism� for I(N), as a step

towards the omputation of the abalianization of this group in a longer perspe-

tive. It seems that the this goal an be approahed in the spirit of the paper [H4℄,

using the orientable double over Sg−1 → Ng. By Gastesi's theorem [25℄, whih

an be obtained as a orollary from my Lemma 4.1 in [H4℄, I(Ng) is isomorphi

to a subgroup of I(Sg−1), and hene we an restrit the Johnson's homomorphism

de�ned on I(Sg−1) to a homomorphism I(Ng) → ∧3H1(Sg−1,Z). The natural

questions appear, about the image and generators of the kernel of the above ho-

momorphism. I will also try to de�ne the Johnson's homomorphism for I(N)
without referring to orientable surfae. It is worth remarking that Hirose and Sato

[41℄ used the Johnson's homomorphism modulo 2, de�ned on the level 2 mapping

lass group Γ2(N) of a nonorientable surfae, in their omputation of the abelian-

ization of that group, where I also have my own experiene and from the papers

[H2, H3℄. For April 2016 I am planning a one week long visit to the University of

Tokyo, at the invitation of professor Nariya Kawazumi and entirely funded from

his grant. Professor Kawazumi is an expert on Johnson's homomorphism and I

am onvined that a disussion with him will be inspiring. In short, I am ounting

on a ollaboration with experts like S. Hirose and N. Kawazumi in this thread.

4.2. Torsion generators. It is known that the mapping lass group of a losed

surfae is generated by elements of �nite order. An important property of suh

elements is that they an be represented by onformal automorphisms of a Riemann

surfae, with respet to some analyti struture, whih allows their analysis by

methods of hyperboli geometry and ombinatorial group theory, thanks to the

Riemann uniformization theorem. This is a very powerful method, by whih C

Malahlan proved simple onnetivity of the moduli spae of omplex algebrai

urves [64℄, and I obtained in [P1℄ an analogous result for purely imaginary real

algebrai urves (these are omplex urves having real equations but no R-rational

points). In this subjet I also have some experiene from my Ph.D. thesis. In the

paper [P3℄ I proved that for g ≥ 3 the group M(Ng) is generated by 4 involutions,
and also is generated by 3 elements, two of whih have in�nite order. It is an
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open question, whether this group is generated by 2 elements or by 3 involutions.

Another question whih I would like to answer is whether M(Ng) is generated by

elements of maximal �nite order. If yes, then what is the minimum number of

suh generators? This question is motivated by a theorem of Korkmaz [55℄, who

proved that the group M(Sg) is generated by 2 elements of maximal �nite order

4g + 2. This thread does not have a high priority for me personally, but I think

that it ould be a good material for a future Ph.D. student supervised by me.

4.3. Simpliial omplexes assoiated with nonorientable surfaes. By the

famous theorem of Ivanov [44℄, the group of automorphisms of the urve omplex

C(S) on an orientable surfae S is isomorphi to the extended mapping lass group

M⋄(S). This theorem has been generalized to various other simpliial omplexes

assoiated to an orientable surfae, and reently also to the ase of a nonorientable

surfae [2℄. The last result is a motivation for the study of automorphisms and

geometri properties of various omplexes whih an be assoiated with a nonori-

entable surfae. I have on mind mainly some natural subomplexes of the urve

omplex, suh as, for example, the omplex of separating urves, one-sided urves

with nonorientable omplement, urves representing a �xed homology lass. This

again, in my opinion, an be a good material for a future Ph.D. thesis under my

supervision.

4.4. 3-dimensional manifolds - �nite group ations on handlebodies. Tak-

ing up the subjet of 3-dimensional manifolds is for me a natural step, onsidering

the role of mapping lass groups of surfaes in this theory (it is enough to men-

tion the Heegaard splittings or the open book deompositions of 3-manifolds). In

the �rst plae I will fous my attention on handlebodies, where I will onsider also

nonorientable handlebodies obtained by attahing twisted handles to a 3-ball. One

of the long term goals of this researh tread is the development of new methods

of onstrution and lassi�ation of �nite group ations on handlebodies. This is

a lassial subjet with a vast literature in the orientable ase. I am going to try

my hand at this subjet, inluding also the ase of nonorientable manifolds, using

the experiene from my work on �nite group ations on surfaes (Setion 3.8) and

ontinuing the fruitful ollaboration with G. Gromadzki. In the realization of this

projet I am also ounting on a ollaboration with M. Stukow, who is an expert on

the mapping lass group of a nonorientable surfae like me, and also R. Hidalgo

from Chile, who is an expert on Shottky groups.

We will look for an algebrai riterion that ould be used to answer two kinds

of questions. First, whether an ation of a �nite group G on a losed surfae F ,
given by a smooth epimorphism (as desribed in Setion 3.8), extends to an ation

on a handlebody whose boundary is F ? Seondly, when two di�erent extensions

of the same ation are topologially onjugate? Our �rst task, whih we treat as

a testing ground, will be a lassi�ation, up to topologial onjugation, of �nite

group ations on orientable handlebodies of low genus 2, 3 and 4. The staring

point for this task is the lassi�ation, up to isomorphism, of �nite groups ating

on suh handlebodies, found in [71℄, as well as the results onerning the topologial
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lassi�ation of �nite group ations on losed orientable surfaes of genera 2, 3 and

4 due to Broughton [15℄, Kimura [51℄ and Bogopolski [10℄, who has expressed his

interest in partiipation in this task. The involvement of O. Bogopolski, who is an

outstanding expert in the ombinatorial group theory, is important for our plans

of extension, to the nonorientable setting, of the lassial method of onstruting

ations on handlebodies of the fundamental group of a graph of groups, due to D.

MCullough, A. Miller and B. Zimmermann [71℄.

4.5. Mapping lass group of a nonorientable handlebody. Another goal of

global nature is the study of algebrai properties of the mapping lass of a nonori-

entable handlebody, whose boundary is a nonorientable surfae of even genus.

Examples of spei� tasks inlude obtaining a �nite generating set of this group,

and then a �nite presentation, by methods similar to those that led to analogous

results for orientable handlebodies [80, 85℄, and by using the experiene from my

work on presentations of mapping lass groups of surfaes. Also in this thread I

am ounting on a fruitful ollaboration with S. Hirose, already initiated during his

visit to Gda«sk in June 2015. This subjet is essentially ompletely new, and I

think that there is also a lot of spae for a future Ph.D. student.
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