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C. Description of the scientific achievement

The scientific achievement comprises above-mentioned collective publications. My contribution is
described in point I.B of the annex List of published scientific papers or creative and professional work
and information about teaching achievements, scientific collaboration and popularisation of science. The
contribution of coauthors is presented in the attached statements.

The references cited with letters, e.g. [A], refer to the publications that belong to the series (listed
above). The references cited with numbers, e.g. [1], refer to the applicant’s publications that do not belong
to the series. Other references are cited with the name of the first author and the year of publication, e.g.
[Einstein1935].

1. Introduction

Quantum systems can be correlated in ways inaccessible to classical objects. Various notions of classicality
of correlations exist and within this scientific achievement we classify them, quantify them and study their
consequences. For example, one may regard as classical the local realistic world view put forward by
Einstein, Podolsky and Rosen [Einstein1935]. Using modern language this is the world in which the results
of experiments can be calculated by local algorithms supplied with data transmitted no faster than the speed
of light. Bell showed that correlations between outcomes of such local programs are bounded [Bell1964], and
there exist entangled quantum states with correlations violating this bound. Interestingly, Werner proved that
there are other entangled quantum states that generate outcomes in perfect agreement with a local realistic
view [Werner1989]. Therefore according to local realism even correlations generated by some entangled states
are classical.
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Clearly one can object that the notion of local realism is too broad as it is also present in models different
from classical physics. The set of states admitting a local realistic model is reduced if another notion of
classicality is introduced. One may regard as classical those states which can be prepared with the help of
local operations and classical communication (LOCC). According to this notion, the set of classical states
is exactly the set of separable (not entangled) quantum states [Horodecki2009], and quantum correlations
correspond exactly to entanglement. However, one may object to this notion of classicality too, having
in mind the nature of the operations allowed in the framework of LOCC. Indeed, local operations here
allow for the preparation of indistinguishable pure quantum states, whereas it is impossible to prepare pure
indistinguishable states of a classical bit: a classical bit about which we have full knowledge (in a pure
state) can be either in state “0” or in state “1”, i.e., in one of two fully distinguishable states. General
quantum states which satisfy this final classicality constraint form a subset of the separable quantum states
and accordingly define some separable states as quantumly correlated. In this spirit the present scientific
achievement first discusses phenomena related to local realism, then talks about entanglement/separability
border and finally focuses on quantum discord and related notion of classical correlations (discord identifies
as classically correlated states that form a subset of separable states).

2. Summary

We begin with the most relaxed notion of classicality in our hierarchy, i.e. the notion of local realism. It is
well known that correlations admitting local realistic description satisfy Bell inequalities, and furthermore that
correlations of quantum mechanically entangled states may violate those inequalities. However, it turns out
that simultaneous violation of more than one Bell inequality is often not possible. The name “Bell monogamy”
was coined for this effect as in the simplest case maximal violation of one Bell inequality implies no violation
for another one. In Ref. [D] we show that quantum bounds on violations of multiple (multipartite) Bell
inequalities can be derived from a relation we call correlation complementarity. Correlation complementarity
is a version of uncertainty relation applied to correlations between multiple quantum systems. Additionally
to explaining many tight Bell monogamy relations, we showed that for multipartite Bell inequalities it is
actually possible to violate simultaneously more than one Bell inequality. Correlation complementarity has
also found other applications, e.g. in entanglement detection [E,30] and quantum-to-classical transition [22].

Our second notion of classicality is separability. We propose a new complete characterisation of quantum
entanglement in terms of directly experimentally accessible correlation functions [A]. This is then used
to derive new experimentally friendly entanglement detection techniques [C,E,H] as well as to study the
interplay between entanglement and local realism [C]. Our methods were successfully implemented in the
quantum optics laboratory of Prof. Weinfurter [E]. Although quantum entanglement manifests itself in
correlations, and in bipartite setting entanglement is always supported by existence of bipartite correlations,
in the multipartite case genuinely multiparty entangled states exist that do not give rise to any multiparty
correlations [Kaszlikowski2008]. We showed that for any pure state (of odd number of qubits) there exists
an “anti-state” with exactly opposite multipartite correlations. Thus taking an even mixture of these pure
states results in states without multipartite correlations. Many of them are genuinely multiparty entangled
as demonstrated theoretically and experimentally in Ref. [K].

Finally we turn our attention to quantum discord, which decides as classical correlations of states that
can be locally measured without disturbing them. We introduce a unified approach which allows for direct
comparison of entanglement and discord as it uses the same mathematical quantities for both [B]. Namely,
the amount of entanglement is measured by relative entropy from the closest separable state and amount
of discord is measured by the same quantity calculated to the closest classical state. It turns our that
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FIG. 1 Bell monogamy scenarios. a) Three observers (vertices) are trying to violate two bipartite
Bell inequalities (edges). b) Very compressed scenario where only four observers try to violate four
tripartite Bell inequalities. c) and d) are yet other exemplary possibilities for which we provide tight
Bell monogamy relations.

a new type of correlations appears naturally in this formulation and describes non-classical correlations
that exclude entanglement, i.e. in the closest separable state to the original state. We show that such
introduced relative entropy of discord is of utmost importance in entanglement distribution protocols as its
value measured on the system communicated in the protocol bounds the amount of distributed entanglement
[F]. We emphasise that entanglement gain is not bounded by the communicated entanglement, but by the
communicated discord which can be positive even in separable states. In this way we identify discord as
necessary resource for entanglement distribution and the quantity which empowers entanglement gain via
separable carriers noted in [Cubitt2003]. The latter effect was for the first time observed in Ref. [I] as well as
parallel works [Vollmer2013,Peuntinger2013]. Other applications of discord include its role in communication
and computing scenarios (example of random access codes is treated in Ref. [J]) and are summarised in our
review [G].

We now describe the works belonging to the series in more detail.

3. Local realism

Local realism asserts that all possible measurements have simultaneously well-defined results that only
depend on (local) parameters of measuring devices and particles that enter them. Special relativity is an
example of a local realistic theory because given positions and momenta of a system of particles we can
in principle calculate the measurement results for all possible physical quantities. Furthermore, space-
like separated events cannot influence each other imposing locality. Since quantum mechanics gives only
probabilistic predictions, it was puzzling already to the fathers of the theory whether a deeper local realistic
theory exists where quantum probabilities originate form the lack of knowledge of some of its variables. Bell
was the first one to show that such a local hidden variable theory underlying quantum predictions does not
exist [Bell1964]. He derived an inequality that is satisfied by all correlations of local realistic theories but is
violated by certain quantum correlations. This violation became known as “quantum non-locality” though
one should be careful to note that quantum mechanics does not allow for superluminal communication (so
called no-signalling principle). This peaceful coexistence of quantum mechanics and special relativity can be
harnessed to make statements about quantum predictions themselves.
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Bell monogamy relations. Consider as an example the situation in Fig. 1a). Three observers (black
vertices) are trying to violate two Bell inequalities (colourful edges) such that the measurement results of
the left observer enter into both Bell inequalities. It turns out that if it were possible to violate both
inequalities, left observer could communicate instantaneously with the right observers breaking no-signalling
principle [Pawlowski2009]. However, no-signalling alone does not recover exact quantum bounds on the
amount of violations [Toner2006]. In Ref. [D] we recover those bounds from the relation we called correlation
complementarity.

Correlation complementarity is a form of uncertainty relation: it reveals trade-offs in expectation values
measured in arbitrary quantum state. For dichotomic ±1 observables with corresponding anti-commuting
operators, Ak, we have [D, Wehner2008, Wehner2010]:∑

k

α2
k ≤ 1, (1)

where αk is the expectation value of Ak. Therefore, if one of the expectation values is big, say close to one,
the other ones have to be small, giving rise to the trade-off. We now consider complete set of correlation
Bell inequalities for many observers, each choosing one of two measurement settings and with dichotomic
measurement outcomes [Werner2001,Zukowski2002]. Ref. [Zukowski2002] derives the upper bound on the
quantum value of the general Bell operator B with the local realistic bound normalised to one:

B2 ≤
∑

j1...jN=x,y

T 2
j1...jN , (2)

where summation is over orthogonal local directions x and y which span the plane of the local settings,
and Tj1...jN are the elements of the so-called correlation tensor, which gives alternative to density matrix
description of quantum states. Namely, any state of N qubits with density matrix ρ can also be written as

ρ =
1

2N

3∑
µ1...µN=0

Tµ1...µN
σµ1
⊗ · · · ⊗ σµN

, (3)

where σ0 is the identity matrix and σ1, σ2, σ3 denote Pauli matrices. Our method for finding quantum
bounds for Bell violations is to use condition (2) for combinations of Bell parameters and then identify sets
of anti-commuting operators in order to utilise inequality (1).

As a warm up let us derive the Tsirelson bound [Tsirelson1980]. For two qubits the general Bell parameter
is upper bounded by B2 ≤ T 2

xx + T 2
xy + T 2

yx + T 2
yy. One can identify here two vectors of averages of anti-

commuting observables, e.g. (Txx, Txy) and (Tyx, Tyy). Applying correlation complementarity (1) to each of
these vectors we find B ≤

√
2, which is exactly the Tsirelson bound (recall that the local realistic bound of

B is here fixed to one).

The monogamy relation of Fig. 1a) is obtained as follows. Consider the sum of two Bell parameters and
use (2) to upper bound each parameter individually: B2

AB + B2
AC ≤

∑
k,l=x,y T

2
kl0 +

∑
k,m=x,y T

2
k0m. It is

important to note that the settings of A are the same in both sums and so are orthogonal directions x and
y. This allows us to arrange the Pauli operators corresponding to correlation tensor components entering
the sums into the following two sets of anti-commuting operators: {σxσxσ0, σxσyσ0, σyσ0σx, σyσ0σy} and
{σyσxσ0, σyσyσ0, σxσ0σx, σxσ0σy}, where the order gives the qubit on which the operator acts. Since we were
able to identify just two such groups, the correlation complementarity gives B2

AB + B2
AC ≤ 2. Accordingly,

once one Bell inequality is violated, the other one has to be satisfied.

Using the same method we derive Bell monogamy relations related to more complicated graphs, examples
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given in Fig. 1. They reveal that for multipartite Bell inequalities it is actually possible to violate more that
one inequality at a time, but there is still a form of monogamy. This is nicely illustrated by the inequality
corresponding to Fig. 1b). It turns out that the monogamy relation reads:

B2
ABC + B2

ABD + B2
ACD + B2

BCD ≤ 4. (4)

Therefore, in principle even three Bell inequalities could be violated, but not four. Indeed we also proved that
all the relations derived in this way are tight, i.e. all mathematically allowed values for the Bell parameters
can be realised by suitable measurements on suitable states.

4. Separability

We turn our attention to probably best known kind of nonclassical correlations — quantum entanglement.
States which are not entangled are called separable and can be written in the following mathematical form:

ρsep =
∑
i

piρ
(1)
i ⊗ · · · ⊗ ρ

(N)
i , (5)

where pi’s are probabilities and ρ
(n)
j is an arbitrary state of the nth subsystem. We provide alternative

characterisation of entanglement, show how it translates to experimentally useful expressions and study
effect of “entanglement without correlations”.

Necessary and sufficient condition. Let us begin with a simple geometrical fact: if a scalar product of two
real vectors ~s and ~e satisfies ~s · ~e < ~e · ~e, then ~s 6= ~e. We adopt it to entanglement detection by replacing the
scalar product with inner product and taking as vectors correlation tensors (or density matrices) of separable
and entangled states:

max
T sep

(T, T sep) < (T, T ) =⇒ T is entangled. (6)

Since T sep is a convex mixture of correlation tensors of product states, we can introduce simpler condition:

max
Tprod

(T, T prod) < (T, T ) =⇒ T is entangled. (7)

By fixing the inner product to (A,B) =
∑3
j1...jN=1Aj1...jNBj1...jN , we note that the left-hand side of our

criterion is just the maximal possible correlation function of the state, Tmax, and the criterion becomes:

Tmax < (T, T ) =⇒ T is entangled. (8)

Although very simple this criterion is optimal in some nontrivial cases. Consider Werner state of two qubits
ρ = p |ψ−〉 〈ψ−| + (1 − p) 1

411, where |ψ
−〉 is the Bell singlet state and 1

411 describes white noise. It is easy
to verify that non-vanishing correlations of this state are Txx = Tyy = Tzz = −p. Thus, Tmax = p while
(T, T ) = 3p2. Our criterion shows that this state is entangled for p > 1/3, i.e. exactly for all entangled states
of the family.

In general this criterion is of course not optimal and we extended it to a necessary and sufficient condition
for entanglement [A]. It turns out that one has to consider generalised inner product defined via a positive
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semidefinite metric G:

(A,B)G =

3∑
µ1...µN ,ν1...νN=0

Aµ1...µN
Gµ1...µN ;ν1...νNBν1...νN . (9)

Then the following condition becomes necessary and sufficient for entanglement:

∃G max
Tprod

(T, T prod)G < (T, T ) ⇐⇒ T is entangled. (10)

The implication from left to right is clear from the argument above. For the converse statement, the
(extended) correlation tensor of an entangled state has to lie at a finite distance from a set of separable
correlation tensors (this translates into the strict inequality in (10)). Since the set of separable correlation
tensors is convex, it contains the closest tensor T0 to our tensor of interest T . The metric for which the left
hand side holds can be symbolically expressed as a projector onto T0 [A]. We also showed that entanglement
witnesses [Horodecki1996] correspond to metrics that can be cast as projectors. Since more general metrics
are allowed in our criterion, it is strictly reacher than the family of entanglement witnesses.

Detection of quantum entanglement. The usefulness of this criterion comes from the fact that it involves
directly measurable correlations. There is no need to process them in any way or reconstruct a density
matrix. Another advantage comes from considering the simplest criterion of the family, i.e. condition (8)
with Tmax = 1:

3∑
j1...jN=1

T 2
j1...jN > 1 =⇒ T is entangled. (11)

First note that this holds for any quantum state, pure or mixed. The criterion is therefore state
independent, in contradistinction to linear entanglement witnesses which are typically tailored to certain
states. Furthermore, to prove entanglement it is sufficient to break the threshold on the right hand side, i.e.
in general it is not necessary to measure all correlations. Using fundamental properties of the correlation
tensor, we designed schemes to minimise the number of required correlation measurements [E,30].

In Ref. [E] we proposed and implemented a scheme based on the Schmidt decomposition of a pure
quantum state. In this context Schmidt decomposition implies that a measurement along local Bloch vectors
of a quantum state reveals the highest correlation in a state. Therefore, this is a natural starting point when
verifying entanglement using (11). For the states which have vanishing local Bloch vectors we propose a
filtering scheme which with one additional correlation measurement reveals maximal correlations in a state.
With the help of correlation complementarity we also designed efficient algorithms for entanglement detection
in unknown states. The idea is that if big correlations are measured, there is no need to measure all anti-
commuting observables as they must have small expectation values and so we can directly move to sectors
of the correlation tensor where there is still a chance of large correlation.

One more advantage of many of our conditions is that they sum up squared correlations, i.e. with further
measurements we always increase the left-hand side and we can stop measuring as soon as the threshold is
exceeded. This is in contrast with linear entanglement witnesses where all the measurements defining it have
to be done as intermediate measurements could subtract from the corresponding left hand side. Ref. [H]
gives an explicit example of such subtraction as well as methods of finding metric G given a state of interest.

Finally, we used these techniques together with our conditions for violation of Bell inequalities [3,4] to
study the interplay between entanglement and local realism [C]. We verified how entanglement and ability
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to violate certain classes of Bell inequalities depends on noises applied to individual qubits. The work is very
systematic: we study effects of white noise, coloured noise, depolarising, dephasing, and amplitude damping
on multi-qubit systems prepared in Bell states, GHZ states, generalised GHZ, and W states. In all these
scenarios one can find noise strengths for which entangled states satisfy broad classes of Bell inequalities. In
particular, there are examples where this happens for infinitely many qubits.

Entanglement without correlations. Correlations between measurement results are the most prominent
feature of entanglement. Every entangled bipartite state gives rise to non-vanishing elements of the correlation
tensor. However, extrapolation of this result to multipartite systems is no longer true [Kaszlikowski2008].
There exist genuinely N -partite entangled states which nevertheless have no N -party correlations.

In Ref. [K] we showed a simple construction of no correlation states. For any pure quantum state |ψ〉 we
constructed a state

∣∣ψ̄〉 which has exactly opposite all correlations between an odd number of observers. We
proved it by showing that

∣∣ψ̄〉 can be mathematically obtained from |ψ〉 by application of local universal-not
gates. These gates reverse the eigenvalues of all Pauli operators and therefore application of an odd number
of them reverses the correlations. Importantly, although universal-not gate is not a unitary operation, we
showed that

∣∣ψ̄〉 is always a proper physical state. As such we can mix it with the original state

ρnc =
1

2
|ψ〉 〈ψ|+ 1

2

∣∣ψ̄〉 〈ψ̄∣∣ , (12)

and whenever the total number of qubits is odd we obtain the promised no correlation state. Next, we
presented infinite families of such states which are additionally genuinely multiparty entangled. In order to
complete the proof we again utilised our criteria for entanglement detection described above. These new
states were realised experimentally and a careful error analysis confirmed entanglement without correlations.

5. Discord

As for the quantum entanglement, there are many measures proposed that quantify non-classical
correlations present in some separable states and they could all be broadly called “discord” from the name of
one of the first such measures [Ollivier2001]. They are reviewed in Ref. [G] and importantly essentially all of
them set the same boundary between classical and quantum correlations. As classical they treat correlations
in states that are invariant under local projective measurements. For bipartite systems, if local measurement
is consider only on one side this notion corresponds to so-called classical-quantum states:

ρcq =
∑
i

pi |i〉 〈i| ⊗ ρi, (13)

where pi’s are probabilities, {|i〉} form orthonormal basis and ρi are arbitrary. Similarly, if both parties make
measurements, as classical one treats classical-classical states:

ρcc =
∑
i,j

pij |i〉 〈i| ⊗ |j〉 〈j| , (14)

where now both local bases are orthonormal, and pij is the joint probability distribution. The latter notion is
probably the closest to what one would at first glance describe as classical correlations because it encompasses
two classical random variables, i and j, just written in quantum formalism.
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FIG. 2 Correlations in a quantum state. An arrow from x to y, i.e. x → y, indicates that y is the
closest state to x as measured by the relative entropy S(x||y). The state ρ in general belongs to a
set of entangled states E , the state σ belongs to the set of separable states S, the state χ belongs
to the set of classical states C (either classical-classical or classical-quantum states), and π belongs
to the set of product states P. The distances are: entanglement E, quantum discord D, quantum
dissonance Q, total mutual information Tρ and Tσ, and classical correlations Cρ and Cσ. All relative
entropies, except for entanglement, reduce to the differences in entropies of y and x.

Unified view of correlations. Given so many measures of quantum discord as well as entanglement, it
is difficult to compare between them. In Ref. [B] we remedy this by introducing a single framework for
various correlations. At the time of writing the article also provided one of the first tools to tackle discord
in multipartite systems. Our measures of correlations are based on the idea that a distance from a given
state to the closest state without the desired property (e.g., entanglement or discord) is a measure of that
property. For example, the distance to the closest separable state is a meaningful measure of entanglement. If
the distance is measured with relative entropy, the resulting measure of entanglement is the relative entropy
of entanglement [Vedral1997,Vedral1998]. We also used relative entropy to define measures of nonclassical
correlations, though many other distance measures can serve just as well. Since all the distances are measured
with relative entropy, this provides a consistent way to compare different correlations, e.g. entanglement,
discord, classical correlations.

The relative entropy between two quantum states x and y is defined as

S(x||y) = Tr(x log x)− Tr(x log y). (15)

The relative entropy is a non-negative quantity and due to this property it often appears in the context of
distance measure though technically it is not a distance; e.g., it is not symmetric. In our approach, see Fig. 2,
one starts with a state ρ. Tρ is the total mutual information of ρ given by the distance to the closest product
state. It captures all the correlations in a quantum state. If ρ is entangled, its entanglement is measured
by the relative entropy of entanglement, E, which is the distance to the closest separable state σ. Having
found σ, one then finds the closest classical state, χσ, to it. This distance, denoted by Q, contains the rest of
nonclassical correlations (it is similar to discord [Henderson2001, Ollivier2001] but entanglement is excluded).
We call this quantity quantum dissonance. Alternatively, if we are interested in quantity similar to original
discord, here denoted by D, then we find the distance between ρ and closest classical state χρ. Summing up,
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FIG. 3 The simplest communication scenario. We study what influence exchange of particle C has
on correlations, information, entanglement etc. between the laboratories.

we have the following nonclassical correlations:

E = min
σ∈S

S(ρ||σ) (entanglement), (16)

D = min
χ∈C

S(ρ||χ) (discord), (17)

Q = min
χ∈C

S(σ||χ) (dissonance). (18)

Finally we compute classical correlations as the minimal distance between a classically correlated state, χ,
and a product state π:

C = min
π∈P

S(χ||π) (classical correlations). (19)

Next we proved that discord and dissonance reduce to calculation of entropic costs of measurement and
therefore discord D is equivalent to the zero-way or one-way quantum deficit introduced by the Horodecki
family and collaborators [Oppenheim2002, Horodecki2003, Horodecki2005a]:

D = min
Π=Π1⊗···⊗ΠN

S(Π(ρ))− S(ρ), (20)

Q = min
Π=Π1⊗···⊗ΠN

S(Π(σ))− S(σ), (21)

where Π denotes a projective measurement on individual subsystems. Depending on whether we are interested
in the set of classical-classical or classical-quantum states as classical states we choose the measurements on
suitable subsystems. This choice also decides whether D is equal to the zero-way or one-way deficit.

With all these quantities at hand we ask what are their consequences. In Ref. [B] we noted that
dissonance can be present even in pure entangled states, but only multipartite. For example, the state
|W 〉 = 1√

3
(|100〉+ |010〉+ |001〉), has the closest separable state [Wei2004]: σ = 8

27 |000〉 〈000|+ 12
27 |W 〉 〈W |+

6
27

∣∣W̄〉 〈W̄ ∣∣+ 1
27 |111〉 〈111|, where

∣∣W̄〉 = 1√
3
(|011〉+ |101〉+ |110〉). It turns out that this state contains a

lot of nonclassical correlations in form of quantum dissonance (almost 1 bit).

Entanglement distribution. A striking example of usefulness of quantum discord comes from considering
quantum entanglement and general communication scenarios. Communication is the exchange of physical
systems aimed at establishing correlations between communicating parties. Conceptually the most basic
communication scenario is depicted in Fig. 3. It is then simple to show that the gain in mutual information
caused by the exchange of particle C, i.e. IA:CB − IAC:B , is bounded by the communicated information,
IAB:C [F]:

IA:CB − IAC:B ≤ IAB:C . (22)
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FIG. 4 n → 1 random access codes with shared randomness. Alice and Bob share a finite number
of classical or quantum bits from a common source (shared randomness). Alice is allowed to send a
single classical bit to Bob, who tries to guess the ith bit, xi, of Alice’s input string.

In particular, this shows that no communication causes no information gain. This seems so basic that one
could expect that every kind of reasonable correlations satisfies a similar constraint. Since no doubt quantum
entanglement is a reasonable type of correlations, e.g. it empowers quantum teleportation [Bennett1993] or
quantum cryptography [Ekert1991], we would expect it to satisfy condition similar to (22).

Surprisingly, [Cubitt2003] presented an example where entanglement is gained without it being
communicated, i.e. EA:CB − EAC:B > 0, while EAB:C = 0. This process is called entanglement distribution
via separable states and it points to a question of what actually limits entanglement gain. In Ref. [F] we
showed that it is the communicated quantum discord that provides a bound on entanglement gain (see also
[Streltsov2012] for a parallel work):

EA:CB − EAC:B ≤ DAB|C . (23)

Let us list main consequences of (23): (i) For zero-discord states there is no entanglement gain. This is just
a statement that LOCC does not allow entanglement gain [Bennett1996]. Indeed, states of vanishing discord
are of the form

∑
j pjρ

AB
j ⊗ |j〉 〈j|, and therefore comunication C embodies classical information. In this

context, Eq. (23) is a generalisation of monotonicity of entanglement under LOCC to the case of quantum
communication. (ii) It generalises subadditivity of entropy. We proved that not only entanglement gain but
also entanglement decay is bounded by the discord, i.e. |EA:CB − EAC:B | ≤ DAB|C . For pure states this
reduces to |SA − SB | ≤ SAB , where Sj is the entropy of the jth subsystem. The later is known as the
Araki-Lieb inequality [Araki1970] and is equivalent to the subadditivity of entropy for subsystems AC and
BC. Accordingly, Eq. (23) can be seen as a generalisation of the subadditivity of entropy valid for tripartite
mixed states. (iii) It gives meaning to a negative conditional entropy [Horodecki2005b]. Consider a bipartite
system ρAC with negative conditional entropy SC|A = SAC − SA. There always exists a pure tripartite state
|ψABC〉 which has ρAC as subsystem. We place the purifying particle B in a distant laboratory and note
that the left hand side of (23) is now given by EA:CB − EAC:B = −SC|A. Therefore the negative entropy
gives entanglement gain caused by communication of C to the purifying laboratory.

Apart from fundamental interest, the distribution of entanglement via separable carriers is also helpful in
the case of noisy communication and noisy laboratories. We showed this in Ref. [I] where this protocol
was implemented for the first time using qubits encoded in polarisation of photons and parallel works
[Vollmer2013,Peuntinger2013] demonstrated this way of entanglement distribution with continuous variables.
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Random access codes. Our last example of usefulness of discord are problems that use finite amount of
shared randomness. The general argument runs as follows. It is known from Bell’s theorem that quantum
predictions for some entangled states cannot be mimicked using local hidden variable (LHV) models. From
a computer science perspective, LHV models may be interpreted as classical computers operating on a
potentially infinite number of correlated bits originating from a common source. As such, Bell inequality
violations achieved through entangled states are able to characterise the quantum advantage of certain tasks,
so long as the task itself imposes no restriction on the availability of correlated bits. However, if the number of
shared bits is limited, additional constraints are placed on the possible LHV models, and separable states may
become a useful resource. Bell violations are therefore no longer necessary to achieve a quantum advantage.

In Ref. [J] we showed this explicitly for the task called random access code. Imagine that Bob would
like to know (better than just by sheer guess) a random number from Alice’s telephone book. Is it necessary
for Alice to send Bob the whole book? Or can she communicate fewer “encoded” pages such that Bob is
reasonably confident of getting the correct number? Random access codes are strategies designed to solve this
problem. As illustrated in Fig. 4 , in a classical n → 1 random access code (RAC) Alice receives a random
n-bit input x, and communicates a single bit to Bob, who given this piece of information tries to guess the
ith bit of Alice, xi, by outputting his guess bi (in every run i is chosen at random). We may construct
quantum versions of this task by either having Alice communicate a single quantum bit [Ambainis2002] or
by having Alice and Bob share an entangled quantum state aided by a single bit of classical communication
[Pawlowski2010]. We study here the latter version of the problem and allow for arbitrary quantum states in
place of just entangled ones. The role of quantum discord in the former version of the problem was considered
in [Yao2012]. Our choice makes the relevance of shared randomness more transparent because by restricting
the communication to classical the only additional resources facilitating the process are the assisting (qu)bits.

A standard figure of merit characterizing the efficiency of the RAC is the probability Pmin of Bob’s
correct guess in the worst-case scenario (minimised over x and i), i.e. Pmin = minx,i Pr(bi = xi). We showed
that for two bits of randomness a classical n → 1 RAC has: (i) Pmin ≤ 1

2 for n > 2; (ii) Pmin ≤ 2
3 for

n = 2; (iii) Pmin ≤ 1
2 for all n, if the random bits have maximally mixed marginals for Bob. Interestingly,

the best classical protocol utilises bits that are biased, i.e. the bias in shared randomness can be used to
gain additional efficiency. This is in contrast with many studies of randomness which often employ so-called
common randomness, i.e. pairs of perfectly correlated and locally completely random bits. We then presented
quantum codes assisted with Bell diagonal states and showed, for example, that 3→ 1 code has efficincy:

Pmin =
1

2

1 +
1√

T−2
1 + T−2

2 + T−2
3

 , (24)

where Tj are the diagonal elements of the correlation tensor of the Bell diagonal state (in the derivation it
is assumed that all Tjs are not zero). As Pmin >

1
2 , this quantum code is thus more efficient than the best

classical code. If one restricts themselves to separable Bell diagonal states, it can be shown that Pmin in this
case is as high as Pmin = 1

2 (1+ 1
3
√

3
) ≈ 0.596, considerably above the classical bound. Furthermore, examples

exist where separable states outperform some entangled ones.

Finally we would like to give an argument suggesting that many sensible discord-like measures are still to
be discovered. All of them set the same boundary between classical and quantum correlations, but the actual
amount of nonclassical correlations is of course measure dependent and we might expect yet other quantities
whose values are better suited to capture performance of various tasks. This is nicely illustrated by random
access codes studied here. Although quantum discord empowers quantum advantage in our examples and
furthermore it is proportional to the efficiency of the protocol for fixed classes of states, it should be noted that
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the amount of the geometric quantum discord for different classes of states [Dakic2010] is not an indicator
of the usefulness of the states for quantum random access codes. Namely, our optimal separable state for
2→ 1 code has geometric discord Dsep = 1

2
√

2
that corresponds to Pmin = 1

2 (1+Dsep). For the Werner states
DWer = p, where p gives the admixture of entanglement, and this corresponds to Pmin = 1

2 (1 + DWer/
√

2).
Therefore, Werner states containing more discord than the separable state, i.e. for DWer ∈ ( 1

2
√

2
, 1

2 ), still give
worse Pmin than the separable state. The precise physical quantity that is a resource for better quantum codes
is at present unknown, but it will be yet another measure from the series that we broadly called “discord”.

V. OTHER SCIENTIFIC ACHIEVEMENTS

Bibliometric data:

• number of publications: 45 (36 after Ph.D)

• total number of citations: 1500 (1450 without self-citations)

• H-index: 15

• total impact factor: 300

A. before Ph.D

1. New Bell-type inequalities and their applications

We derived tight Bell’s inequalities for multiple observers each choosing between multiple settings [3,4,6].
For some of them we also derived necessary and sufficient conditions for their violation by quantum
predictions. Their link with communication complexity problems is studied in detail in Refs. [1,6].

2. Assumptions behind Bell’s theorem

We clarified the role of locality in certain attempts to prove Bell’s theorem without it [2]. We showed
that to certain extend one can relax assumption on experimenter’s freedom in Bell’s theorem and this has
consequences to cryptography allowing eavesdroppers to partially know the settings of legitimate users [5].
We extended the theorem by Leggett on non-local hidden variables [Leggett2003] and verified experimentally
that a broad class of such models cannot describe nature [7,9].

3. Measurements on composite qudits

We showed how to measure generalised Pauli operators on multiple component systems and applied it to
quantum cryptography [8].

B. after Ph.D

1. Mutually unbiased bases

We studied relations between the number of mutually unbiased bases in Hilbert space of dimension d and
the number of orthogonal Latin squares of border d. We proposed a concrete map from squares to the bases
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[11,18], which however turns out not to related all the squares to the bases in certain composite dimensions
[15]. For composite dimensions we proved that the amount of entanglement contained is any set of d+1 such
bases (if they exist) is always the same [21].

2. Hidden variable models

We showed that in order to explain quantum statistics of the results of n measurements, it is sufficient
to take a hidden variable model with polynomial in n number of hidden variable states, i.e. collections of
vectors which contain predetermined results for all n different measurements [10]. In Ref. [16] we proved
that a hidden variable model has to provide information about distant setting and outcome in order to allow
for Bell inequality violation. While information about the outcome can be encoded in the shared hidden
variables, information about the setting needs to be non-locally transferred within these models. Ref. [19]
shows how to violate a Bell inequality in the presence of super-selection rules. It turns out that the reference
frames need to be prepared jointly. A curious effect is presented in Ref. [26] and was effectively observed
in our experiment [K]. We show a quantum state which admits explicit local hidden variable models for
correlations between any fixed number of observers. However, these models are incompatible as it is possible
to violate a Bell inequality which combines correlations between different number of observers. Finally, in
Ref. [34] we provide evidence that already two qubits can be prepared in a mixed entangled quantum state
which admits a local hidden variable model for all non-trivial admixtures of noise (previous examples used
infinitely dimensional systems).

3. Quantum foundations

In Ref. [13] we introduce a principle of information causality, which states that information transfer of n
classical bits can cause information gain of at most n bits (even if methods used to read different remote bits
are different). This is then shown to be responsible for the quantum Tsirelson bound. In [14] we propose a
link between logical independence (a proposition is independent of the axioms if it can neither be proved nor
disproved from the axioms) and quantum randomness. We demonstrate how to encode axioms in quantum
states and how to encode propositions in quantum measurements. It turns out that whenever a proposition is
logically independent, the measurement results are random. Ref. [17] introduces a hierarchy of models where
physical systems have limited information content. This is shown to lead to complementary measurements
and define computational abilities of these systems. The hierarchy includes classical, quantum, as well as
some generalised probabilistic theories. Ref. [20] studies experimentally information distribution in various
two-qubit states. In [31] we construct a model which predicts genuine triple-slit interference [Sorkin1994].
This model reduces to standard quantum mechanics if certain parameters vanish. Since quantum mechanics
does not allow for the genuine triple-slit interference we hope the model will shed light why this is the case.
Finally, in Ref. [32] we showed that contextuality, non-locality and temporal Bell inequalities are different
faces of the same coin. All of them are about existence of certain joint probability distributions.

4. Quantum to classical transition

We show that measurements of quantities similar to magnetisation on macroscopic bodies can practically
always be described by a classical-like model [22].
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5. Quantum computing

In Ref. [23] we propose efficient method to generate polarisation-entangled NOON states. They are
known to be a resource for quantum lithography and quantum metrology. In [33] we prove that multi-point
temporal quantum correlations are a resource for universal one-way quantum computing [Briegel2001].

6. Quantum correlations

We show how to use our method [A] to detect genuine multi-qubit entanglement [24] as well as how to
detect it with only bipartite correlations [28]. Extension of Ref. [E] that contains more details and studies in
more depth multipartite systems is given in Ref. [30]. In Ref. [25] we prove and experimentally demonstrate
that discord empowers a version of the remote state preparation (see also [Horodecki2014]).

7. Quantum biology

We studied the role quantum coherence might play in the avian compass in Refs. [27,29].

REFERENCES

[1] Č. Brukner, T. Paterek, M. Żukowski, Int. J. Quant. Inf. 1, 519 (2003).

[2] T. Paterek, Int. J. Quant. Inf. 2, 419 (2004).

[3] W. Laskowski, T. Paterek, M. Żukowski, Č. Brukner, Phys. Rev. Lett. 93, 200401 (2004).

[4] T. Paterek, W. Laskowski, M. Żukowski, Mod. Phys. Lett. A 21, 111 (2006).

[5] J. Kofler, T. Paterek, Č. Brukner, Phys. Rev. A 73, 022104 (2006).

[6] K. Nagata, W. Laskowski, T. Paterek, Phys. Rev. A 74, 062109 (2006).

[7] S. Gröblacher, T. Paterek, R. Kaltenbaek, Č. Brukner, M. Żukowski, M. Aspelmayer, A.

Zeilinger, Nature 446, 871 (2007).

[8] T. Paterek, Phys. Lett. A 367, 57 (2007).

[9] T. Paterek, A. Fedrizzi, S. Gröblacher, T. Jennewein, M. Żukowski, M. Aspelmeyer, A. Zeilinger,

Phys. Rev. Lett. 99, 210406 (2007).

[10] B. Dakić, M. Šuvakov, T. Paterek, Č. Brukner, Phys. Rev. Lett. 101, 190402 (2008).

[11] T. Paterek, B. Dakić, Č. Brukner, Phys. Rev. A 79, 012109 (2009).

[12] P. Badzia̧g, Č. Brukner, W. Laskowski, T. Paterek, M. Żukowski, Phys. Scr. T135, 014002

(2009).

[13] M. Pawłowski, T. Paterek, D. Kaszlikowski, V. Scarani, A. Winter, M. Żukowski, Nature 461,

1101 (2009).

[14] T. Paterek, J. Kofler, R. Prevedel, P. Klimek, M. Aspelmeyer, A. Zeilinger, Č. Brukner, New

J. Phys. 12, 013019 (2010).

[15] T. Paterek, M. Pawłowski, M. Grassl, Č. Brukner, Phys. Scr. T140, 014031 (2010).

16



[16] M. Pawłowski, J. Kofler, T. Paterek, M. Seevinck, Č. Brukner, New J. Phys. 12, 083051 (2010).

[17] T. Paterek, B. Dakić, Č. Brukner, New J. Phys. 12, 053037 (2010).

[18] T. Paterek, B. Dakić, Č. Brukner, Phys. Rev. A 83, 036102 (2011).

[19] T. Paterek, P. Kurzyński, D. K. L. Oi, D. Kaszlikowski, New J. Phys. 13, 043027 (2011).

[20] A. Fedrizzi, B. Škerlak, T. Paterek, M. P. de Almeida, A. G. White, New J. Phys. 13, 053038

(2011).

[21] M. Wieśniak, T. Paterek, A. Zeilinger, New J. Phys. 13, 053047 (2011).

[22] R. Ramanathan, T. Paterek, A. Kay, P. Kurzyński, D. Kaszlikowski, Phys. Rev. Lett. 107,

060405 (2011).

[23] S.-Y. Lee, T. Paterek, H. S. Park, H. Nha, Opt. Comm. 285, 307 (2011).

[24] W. Laskowski, M. Markiewicz, T. Paterek, M. Żukowski, Phys. Rev. A 84, 062305 (2011).

[25] B. Dakić, Y. O. Lipp, X. Ma, M. Ringbauer, S. Kropatschek, S. Barz, T. Paterek, V. Vedral,

A. Zeilinger, Č. Brukner, P. Walther, Nature Phys. 8, 666 (2012).

[26] W. Laskowski, M. Markiewicz, T. Paterek, M. Wieśniak, Phys. Rev. A 86, 032105 (2012).

[27] J. N. Bandyopadhyay, T. Paterek, D. Kaszlikowski, Phys. Rev. Lett. 109, 110502 (2012).

[28] M. Markiewicz, W. Laskowski, T. Paterek, M. Żukowski, Phys. Rev. A 87, 034301 (2013).

[29] J. N. Bandyopadhyay, T. Paterek, D. Kaszlikowski, Phys. Rev. Lett. 110, 178901 (2013).

[30] W. Laskowski, C. Schwemmer, D. Richart, L. Knips, T. Paterek, H. Weinfurter, Phys. Rev. A

88, 022327 (2013).

[31] B. Dakić, T. Paterek, Č. Brukner, New J. Phys. 16, 023028 (2014).

[32] M. Markiewicz, P. Kurzyński, J. Thompson, S.-Y. Lee, A. Soeda, T. Paterek, D. Kaszlikowski,

Phys. Rev. A 89, 042109 (2014).

[33] M. Markiewicz, A. Przysiężna, S. Brierley, T. Paterek, Phys. Rev. A 89, 062319 (2014).

[34] M. C. Tran, W. Laskowski, T. Paterek, J. Phys. A 47, 424025 (2014).

[Ambainis2002] A. Ambainis, A. Nayak, A. Ta-Shma, U. Vazirani, J. ACM 49, 496 (2002).

[Araki1970] H. Araki, E. H. Lieb, Commun. Math. Phys. 18, 160 (1970).

[Bell1964] J. Bell, Physics 1, 195-200 (1964).

[Bennett1993] C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, W. K. Wootters, Phys.

Rev. Lett. 70, 1895 (1993).

[Bennett1996] C. H. Bennett, D. P. DiVincenzo, J. A. Smolin, W. K. Wootters, Phys. Rev. A 54,

3824 (1996).

[Briegel2001] H. J. Briegel, R. Raussendorf, Phys. Rev. Lett. 86, 910 (2001).

[Cubitt2003] T. S. Cubitt, F. Verstraete, W. Dür, J. I. Cirac, Phys. Rev. Lett. 91, 037902 (2003).

[Dakic2010] B. Dakić, V. Vedral, Č. Brukner, Phys. Rev. Lett. 105, 190502 (2010).

[Einstein1935] A. Einstein, B. Podolsky, N. Rosen, Phys. Rev. 47, 777 (1935).

[Ekert1991] A. K. Ekert, Phys. Rev. Lett. 67, 661 (1991).

[Henderson2001] L. Henderson, V. Vedral, J. Phys. A 34, 6899 (2001).

17



[Horodecki1996] M. Horodecki, P. Horodecki, R. Horodecki, Phys. Lett. A 223, 1 (1996).

[Horodecki2003] M. Horodecki, K. Horodecki, P. Horodecki, R. Horodecki, J. Oppenheim, A.

Sen(De), U. Sen, Phys. Rev. Lett. 90, 100402 (2003).

[Horodecki2005a] M. Horodecki, P. Horodecki, R. Horodecki, J. Oppenheim, A. Sen(De), U. Sen,

B. Synak-Radtke, Phys. Rev. A 71, 062307 (2005).

[Horodecki2005b] M. Horodecki, J. Oppenheim, A. Winter, Nature 436, 673 (2005).

[Horodecki2009] R. Horodecki, P. Horodecki, M. Horodecki, K. Horodecki, Rev. Mod. Phys. 81, 865

(2009).

[Horodecki2014] P. Horodecki, J. Tuziemski, P. Mazurek, R. Horodecki, Phys. Rev. Lett. 112,

140507 (2014).

[Kaszlikowski2008] D. Kaszlikowski, A. Sen(De), U. Sen, V. Vedral, A. Winter, Phys. Rev. Lett.

101, 070502 (2008).

[Leggett2003] A. J. Leggett, Found. Phys. 33, 1469 (2003).

[Ollivier2001] H. Ollivier, W. H. Zurek, Phys. Rev. Lett. 88, 017901 (2001).

[Oppenheim2002] J. Oppenheim, M. Horodecki, P. Horodecki, R. Horodecki, Phys. Rev. Lett. 89,

180402 (2002).

[Pawlowski2009] M. Pawłowski, Č. Brukner, Phys. Rev. Lett. 102, 030403 (2009).

[Pawlowski2010] M. Pawłowski, M. Żukowski, Phys. Rev. A 81, 042326 (2010).

[Peuntinger2013] C. Peuntinger, V. Chille, L. Mišta, N. Korolkova, M. Förtsch, J. Korger, C.

Marquardt, and G. Leuchs, Phys. Rev. Lett. 111, 230506 (2013).

[Sorkin1994] R. D. Sorkin, Mod. Phys. Lett. A 9, 3119 (1994)

[Streltsov2012] A. Streltsov, H. Kampermann, D. Bruß, Phys. Rev. Lett. 108, 250501 (2012).

[Toner2006] B. Toner, F. Verstraete, arXiv:quant-ph/0611001

[Tsirelson1980] B. S. Tsirelson, Lett. Math. Phys. 4, 93 (1980).

[Vedral1997] V. Vedral, M. B. Plenio, M. A. Rippin, P. L. Knight, Phys. Rev. Lett. 78, 2275 (1997).

[Vedral1998] V. Vedral, M. B. Plenio. Phys. Rev. A 57, 1619 (1998).

[Vollmer2013] C.E. Vollmer, D. Schulze, T. Eberle, V. Handchen, J. Fiurasek, and R. Schnabel,

Phys. Rev. Lett. 111, 230505 (2013)

[Wehner2008] S. Wehner, A. Winter, J. Math. Phys. 49, 062105 (2008).

[Wehner2010] S. Wehner, A. Winter, New J. Phys. 12, 025009 (2010).

[Werner1989] R. F. Werner, Phys. Rev. A 40, 4277 (1989).

[Werner2001] R. F. Werner, M. M. Wolf, Phys. Rev. A 64, 032112 (2001).

[Yao2012] Y. Yao, H.-W. Li, X.-B. Zou, J.-Z. Huang, C.-M. Zhang, Z.-Q. Yin, W. Chen, G.-C. Guo,

Z.-F. Han, Phys. Rev. A 86, 062310 (2012).

[Zukowski2002] M. Żukowski, Č. Brukner, Phys. Rev. Lett. 88, 210401 (2002).

Singapore, 04.09.2015

18


