
SUMMARY OF PHD DISSERTATION IN ENGLISH

A. Motivation and main goals of PhD thesis

Quantum mechanics enables an experimentally provable description of ato-

mic and solid state physics, optics, open systems and elementary particles. Its

formalism is based on postulates leading to one- and many-body correlations

that lack characterization in terms of classical probability theory. In this sense

classical probability theory is restricted to describing macroscopic systems. Due

to the interaction with an environment, the quantum theory of evolution of sys-

tems and their probability distributions are reduced to their classical analogues

in a process called decoherence. In the context of the numerous applications of

quantum correlations, e.g. in numerical algorithms showing exponential speed-

ups with respect to their classical counterparts, in cryptography or in the simu-

lation of quantum systems, the idea of protecting quantum correlations from

destruction in the presence of external noise gains, apart from a pure cognitive

motivation, a strong practical justification. On the other hand, the commonness

of decoherence in nature prompts a search for physical systems that exploit the

interaction with an environment as a catalyst of microscopic processes. This

dichotomy is reflected in the structure of the thesis. We present proofs and pro-

cedures of quantum communication that can be implemented in quantum cryp-

tography and computing. They are based on quantum error correction schemes

aimed at minimizing the effect of decoherence. On the other hand, inspired by

processes benefiting from the quantum-to-classical transition occurring in na-

ture, we analyze the possibility of employing quantum dot systems that can be

realized experimentally in magnetometry.

Establishing quantum communication between spatially separated subsys-

tems in the presence of noise is the goal of quantum repeaters idea [1]. It is ba-

sed on generating entanglement (a type of quantum correlations, [2]) between

separated nodes of a one-dimensional network, which is obtained by exploiting

local quantum correlations shared by subsystems placed on neighboring nodes.

Long-distance quantum communication in one dimension can be established by

applying quantum entanglement purification and swapping protocols, with the

cost of the number of systems at specific nodes increasing logarithmically with

the size of a network. The requirement for quantum memories able to store the
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increasing number of systems per node follows. In order to eliminate this inco-

nvenience, one can use a three-dimensional quantum network taking advantage

of global quantum correlations and quantum error correction protocols [3]. The

aim of work [A] is to deliver a lacking proof of quantum communication in

two-dimensional quantum networks with demand that procedures do not rely

on long-term quantum memories. The reasoning there is based on considering

the fidelity of quantum state encoding into a one-dimensional quantum error

correcting code. Furthermore, in the manuscript we present a simple commu-

nication scheme in three dimensions, based on an encoding procedure of an

unknown quantum state into a Kitaev planar code [4]. In manuscript [B] the

encoding procedure was generalized to Calderbank-Stean-Shor (CSS) [5–7] to-

pological quantum error correcting codes. It can be applied in the realization of

quantum memories and universal quantum computing based on magical state

distillation [8].

The aforementioned methods of exploiting quantum correlations to es-

tablish quantum communication are based on quantum error correction

procedures limiting the negative effects of the system’s interaction with the

environment. Meanwhile, quantum biology delivers examples of systems

that benefit from the interaction by utilizing it as a catalyst in transport or

measurement processes. The molecular light-harvesting complexes are an

example of systems with noise-assisted transport mechanisms [9]. Crucial

processes proposed to explain this behavior include noise-caused line broade-

ning, environment-induced unitary evolution and phase decoherence leading

to channel activation, or interaction between excited states of a molecular

network with a continuous or discrete spectrum of vibrational modes [10].

The work [11] contains an analysis of a transport mechanism in quantum

networks interacting with a spin bath. Coupling to a spin bath is used as

well in magnetodetection processes based on free-radical mechanisms [12].

The second goal of this thesis is to propose procedures exploiting quantum

correlation decay stemming from this mechanism in experimentally realizable

systems. We consider the evolution of a system of quantum dot electron

spin qubits in gallium arsenide (GaAs) in an external magnetic field, where

hyperfine coupling with maximally mixed state of nuclei in a dot is the main

mechanism of decoherence. In manuscript [C] we present a procedure based on
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singlet-fraction measurement in a Pauli-blockade regime. It aims at measuring

the value of a magnetic field by exploiting its connection with the time of

sudden death of entanglement in the system. The work [D] is devoted to the

analysis of the evolution of general quantum correlations, and its utilization in

magnetodetection.

In order to introduce the notation, below we present the basics of quantum-

information and a physical description of the considered problems, starting

from a sketch of quantum error correction techniques based on stabilizer codes.

The quantum threshold theorem [13] is concerned with the possibility of

performing quantum computation in the presence of noise. It states that every

quantum computation can be performed with arbitrary precision with a poli-

logarithmic overhead in space and time, provided that the probability of a local

error is below some threshold value (dependent on the quantum code architec-

ture), and that the error correlations decay exponentially. A critical discussion

of the local noise model, based on open system dynamics of quantum systems

interacting with a thermal bath, is contained in the work [14]. In our analysis

([A], [B]) concerning quantum communication, due to the fact that the Hamil-

tonians of our error correcting codes contain only local interactions, and that

in order to perform teleportation of a state of a quantum code we use noisy

quantum channels acting separately on every qubit1 of the code, we take local

noise to model the interaction of every qubit state with the environment:

ρ→ (1− p2)ρ + p(1− p)σxρσx + (1− p)2σyρσy + p(1− p)σzρσz, (1)

where by σx, σy, σz we denote the Pauli matrices, 0 ≤ p ≤ 1.

The stabilizer formalism [15] allows for a convenient description of many

quantum error correcting codes granting protection against decoherence in the

sense of the quantum threshold theorem. Here, the quantum state is stored

within a logical subspace Hlog of a Hilbert space of a system of N physical

qubits, Hsys = ⊗iHi, i = 1, . . . , N: Hlog ⊂ Hsys, with the decomposition into

logical qubitsHlog = ⊗jHL,j, j = 1, . . . , D ≤ N and space dimensions dim[Hi] =

2 = dim[HL,i]. The logical subspace Hlog is spanned by eigenvectors of the

1i.e. a quantum two-level system.
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group of operators (called code stabilizers) S: {|Ψ〉 : s|Ψ〉 = |Ψ〉, ∀s ∈ S}, where

S is an abelian subgroup of a Pauli group acting on Hsys, that does not contain

−I , where I is the identity operator. The generator of S, G(S), can be defined as

the set of hermitian, pair-wise commuting operators from a Pauli group, with

cardinality |G(S)|. The dimension of the logical subspace satisfies dim[Hlog] =

N − |G(S)|. Elements of pairs of anti-commuting operators (XL,j, ZL,j) on HL,j

commute with all elements from G(S), but cannot be created from G(S). In the

case of CSS codes, G(S) can be represented as a set of operators in which every

operator is a tensor product of one type of Pauli matrix (σx or σz) or the identity

operator. In the works [A] and [B] we will consider topological stabilizer codes

(i.e. defined on a network), with stabilizers defined locally on quantum systems

of neighboring nodes. Measurements of the stabilizers enable the protection of

quantum correlations against local noise; logical operators are defined in a non-

trivial way on loops uncontractible to a point.

Below we discuss the case of modeling the interaction of quantum dots with

an environment, as the dependence of the evolution of quantum correlations

evolution on the magnetic field in these systems is the main topic of works [C]

and [D]. A conduction band of gallium arsenide is constructed mainly from s-

type orbitals. Therefore, isotropic hyperfine interaction dominates other terms

(stemming from a solution of the Dirac equation for an electron): factors pro-

portional to momentum (its coupling to nuclear spins, spin-orbit interaction)

or containing an average over (spherically symmetric) electron wavefunction in

the neighborhood of nuclei (non-isotropic hyperfine coupling) [16]. Due to the

symmetry of charge distribution in the neighborhood of a nucleus, quadrupolar

interaction in gallium arsenide (containing spin 3/2 nuclei) can be neglected as

well. The time scales of the internal evolution of a spin bath are determined by

dipole-dipole interaction Hdip in a secular approximation (valid for magnetic

fields B > 0.1 mT)

Hdip = ∑
k 6=l

dkl Îz
k Îz

l − 2 ∑
k 6=l

dkl Î+k Î−l (2)

between spins Î of the nuclei, where Î± = Îx ± i Îy. Due to the weakness of

dipole-dipole interactions (with a scaling dkl ∝ 1/r3
kl , where rkl is the distance

between nuclei labeled by k and l), the effects of spectrum broadening (the first

term of eq. (2)) and spin diffusion (the second term) are important in time-

scales, respectively, of 100 µs and 1 s [17], which enables one to neglect Hdip
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in further considerations of system evolutions in a nanosecond regime. There-

fore, neglecting Zeeman splitting of nuclei ωk, which are approximatively 103

times smaller than the respective electron splitting (assuming that the evolu-

tion time t satisfies t � minωk ,ωl
1

|ωk−ωl |
for all nuclei k, l in a quantum dot), in

publications [C], [D] we consider only the electron interaction with an external

magnetic field and isomorphic hyperfine interaction (in the approximation of

effective Hamiltonian for an electron in a ground state)

H = −gµBBŜz + ∑
k

AkŜ Îk, (3)

where g is the effective giromagnetic ratio of the electron, µB the Bohr ma-

gneton, and Ŝz a component of a spin operator paralell to the magnetic field.

Hyperfine couplings Ak ∝ Ak|ψ0(rk)|2 depend on the value of the electron enve-

lope wavefuntion at the site of the nucleus rk: φ0(rk) =
√

v0u(rk)ψ0(rk), with

a crystal elementary cell volume v0 and u(r) being a periodic Bloch function

associated with a wave vector k = 0 [18]; the material constant Ak depends on

a chemical element and the isotope of the nuclei.

In work [C] quantum entanglement is measured by the concurrence function

[19, 20]. For a two qubit state ρ this measure is defined as

C(ρ) = max{0, λ1 − λ2 − λ3 − λ4}, (4)

where λi are the square roots (in descending order) of the eigenvalues of a

matrix ρ(σy ⊗ σy)ρ∗(σy ⊗ σy), where ∗ denotes a complex conjugation. In the

manuscript [D] we investigate the possibility of exploiting for magnetometric

purposes the evolution of general quantum correlations in these systems. We

employ a geometric measure DS(ρ) [21] of quantum discord [22] as an indica-

tor of general quantum correlations. Despite of a lack of symmetry under an

exchange of subsystems, this indicator serves as a fidelity measure for remote

state preparation schemes [23, 24]; its evolution in the considered systems (and

the evolution of associated observables) allows for suggesting magnetodetec-

tion protocols in magnetic field regimes not accesible for methods presented

in [C]. In order to minimize the geometric discord dependence on purity of a

state (which is a result of the non-contractivity of a Hilbert-Schmidt norm with

respect to local completely positive trace preserving operations [25, 26]), we use

a rescaled geometric discord [27]

D(ρ) =
1
2

(
1−
√

3
2

)[
1−

√
1− DS(ρ)

2Tr[ρ2]

]
. (5)
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DS(ρ) is estimated by calculations of its bounds: an upper [21]

D
′
S(ρ) =

1
4

max
q=x,y

(Tr[Kq]− kq), (6)

and a lower one [28]

D
′′
S(ρ) =

1
4

max
q=x,y

(Tr[Kq]− kq + Tr[Kp]− kp), (7)

for p 6= q. Using a correlation matrix representation of a two qubit state, with

matrix elements defined as Tij = Tr[ρ(σi ⊗ σj)] and vectors ~x = |x〉, where

xi = Tr[ρ(σi ⊗ I)] and ~y = |y〉, where yi = Tr[ρ(I ⊗ σi)], we define kq as the

biggest eigenvalue of a matrix Kq = |q〉〈q| + TqTT
q , with Tx = T, Ty = TT. lq

is the biggest eigenvalue of a matrix Lq = |q〉〈q|+ Tq|k̂p〉〈k̂p|TT
q , while |k̂q〉 is a

normalized eigenvector associated with the eigenvalue kq of the matrix Kq. D
′
S

and D
′′
S converge e.g. for states diagonal in the Bell basis.

B. Summary of results contained in PhD thesis

Below we present a summary of publications that consist for the PhD dis-

sertation. They are divided into two groups: works [A-B] are dedicated to the

application of quantum error correcting codes in quantum communication and

quantum memories; they contain analytic bounds for the fidelity of associated

quantum processes in the presence of local noise, and take into account chosen

architectures. The second group of publications, [C-D], is devoted to the interac-

tion of realistic systems of two electron spin quantum dots in gallium arsenide

with their separate spin environments. We present protocols aimed at the de-

tection of external magnetic field that are partly achievable in experiment. They

are based on a relation between the value of a magnetic field and the type and

rate of decoherence. We begin with a presentation of proofs for the possibility

of quantum communication in a two-dimensional quantum network.

1. Long-distance quantum communication in two and three dimensions in presence of noise

Publication [A] presents a proof of quantum communication in noisy two-

dimensional networks, together with a simple scheme of communication in

three dimensions. In both cases the reasoning is based on an isomorphism be-

tween quantum information storage in quantum networks of dimension D, and
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information transfer in a dimension D + 1. Introduced in [29], the isomorphism

relies on the fact that procedures which enable the correction of local noise re-

sulting from interactions with environment in time, can be likewise applied

in a situation when the errors stem from the teleportation of a code structure

in space, from one layer to another, with the use of non-maximally entangled

states shared between pairs of network nodes from different layers. Therefo-

re, in order to prove the possibility of quantum communication in two and

three dimensions, we calculate the fidelity of quantum memories in one and

two dimensions, respectively. We take into account not only the noise effect

on information storage, but also limited fidelities of encoding and decoding

procedures.

In the one-dimensional case ([A], Proposition 1) it is shown that the fidelity

F0 of encoding of an unknown qubit state into a concatenated code is lower-

bounded by a function

F0 ≥ e−2v
√

p, (8)

where v is the number of gates used for encoding into the first level of conca-

tenation, p ≤ pth/3 is the probability of a local noise (acting on a single qubit

after performing each of the gates, including identity gates), which is smaller

than the threshold probability pth of a chosen code architecture. The proof relies

on the calculation of the success probability of encoding into the r-th level of

concatenation, which exploits the estimation of the error probability pk on the

k-th level (pk ≤ 1
c

(
cp0
)2k

, with c = (v
2)) and algebraic estimations performed in

order to relinquish the dependence on the parameter r. A reasoning included

in the work [30] allows for calculating a lower bound on the fidelity of quan-

tum state storage. We assume that the fidelity of decoding is not lower than the

encoding fidelity (which is satisfied e.g. for a full unitary fault tolerant scheme

[13]). On a basis of the aforementioned isomorphism between quantum memo-

ry and quantum communication, we receive a lower bound on the fidelity F of

quantum communication in two dimensions:

F > e−2v
√

p[1− 2c1Te−c2V ], (9)

where V = Nk is the number of qubits and T the number of space steps on

which the teleportation takes place. It is required that the communication sche-

me utilizes resources of local entanglement between nodes of a network, and
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that the local error does not exceed pth/3. Constants c1 and c2 depend on the

type of concatenated code. The bound (9) implies a possibility of entanglement

percolation [29] in a two-dimensional quantum network of nodes sharing en-

tanglement with their closest neighbors.

We start our analysis of quantum communication in three-dimensional qu-

antum networks from the non-fault tolerant case, where we assume the follo-

wing: it is possible to ideally prepare a qubit state in an eigenstate of σz and σx

Pauli matrices (i.e. σz|0〉 = |0〉, σz|1〉 = −|1〉, σx|±〉 = ±|±〉); all the qubits can

be measured in the σz and σx Pauli bases with no fault, as well as the values of

all the stabilizers; one can perform σx and σz rotations on the code qubits ([A],

part III). We present encoding and decoding procedures of an unknown qubit

state into a topological Kitaev code on a surface. State preparation is depic-

ted on Fig. 2(a) ([A]). Succeeding stabilizer measurements and qubit rotations

are aimed at driving the state of a code into the logical subspace. The deco-

ding procedure ([A], Rys. 2(b)) is based on rotations performed on the qubit on

which the code state is to be decoded. Those operations are conditioned on the

one-qubit measurements in the Pauli basis, which destroy correlations in the

code. Correctness proofs of the aforementioned procedures ([A], Proposition 2,

Proposition 3) are based on an observation [31] that the fidelity of a quantum

process depends only on the outcomes of the measurements performed on two

complementary sets of input states. Part IIIB of the manuscript [A] contains a

description of the encoding procedure viewed as a teleportation scheme of an

unknown state from one node of a network into a two-dimensional quantum

code. Maximally entangled virtual qubits, created in a code by the stabilizer

measurements, are the resource used in this teleportation process.

We move to the fault-tolerant scenario, where state preparation and measu-

rements of stabilizers are subjected to noise ([A], part IV). In order to detect and

eliminate these errors, we extend the non-fault tolerant encoding and decoding

procedures by stabilizer measurements performed in time, as well as by a pro-

per error correction algorithm. We calculate a lower bound on the fidelity of

encoding, storage and decoding of an unknown qubit state in a Kitaev planar

code. While assuming a local noise model, we do not take into account error

propagation to quantum codes from the measurements of the stabilizers values.

Nevertheless, we believe that this issue can be addressed in the spirit of work
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[32], where the application of proper schemes results in a modification of the

threshold probability value enabling quantum calculations with the arbitrary

precision, however, it do not affect the positivity of the threshold value.

A scheme for correcting phase errors (bit errors can be corrected indepen-

dently and in an analogous way due to the CSS structure of the code) relies on

performing chains of σz rotations on two-dimensional projections of the paths

connecting those of the stabilizers Xs in a three-dimensional network that regi-

stered non-trivial measurement outcomes – it indicates that the support of the

code state in not contained in the logical subspace ([A], Fig. 4). The paths are set

so that their total length in a cubic network with Taxicab metric is minimized -

the metric is modified by a weight factor − ln pi
1−pi

on the edges that represent

qubits or stabilizer measurements that are affected by local noise with proba-

bility pi. This modification allows to take into account the effects of encoding

and decoding procedures, as those procedures are based on the preparation

of qubit states and their measurements in a chosen basis. As a result, there is

a very high probability of obtaining a non-trivial measurement outcome of a

stabilizer of a type dual to that of the basis (e.g., measurement of XS stabilizer

defined on qubits all prepared in the σZ basis). Therefore, from the perspective

of the procedures which correct errors of a chosen type, the effective boundaries

on the preparation and measurement code layers experience a shift towards a

diagonal of the two-dimensional cuts ([A], Fig. 4). This illustrates that it is not

possible to avoid an impact of the encoding and decoding parts of the protocol

onto the fidelity of the communication process.

This intuition is rigorously justified by analytic estimates of the presented

procedure fidelity ([A], Proposition 6). They are based on estimating the pro-

bability of occurrence of non-trivial error loops that lead to an uncontrolled

logical operation on an unknown code state. Independent calculations for bit

and phase errors ([A], eq. (17) and (18)), lead, through Lemma 4 and under an

assumption of at most polynomial increase of time storage with code dimen-

sion N, to the following bound of the process fidelity

lim
N→∞

F ≥ 1− 6p− 2α2(5− 3α)

(1− α)3 (10)

for p / 0.007, with α = 12
√

p(1− p).

Due to the isomorphism between the time and space dimension of the sche-

me, the above expression applies to the fidelity of the protocol of quantum com-
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munication in three dimensions, relying on local, short-term memory and local

resources of entanglement ([A], Fig. 8). Implication 2 shows that the space di-

mensions of a code scale at most logarithmically with the distance of quantum

communication. Therefore, the described procedure is a protocol of entangle-

ment percolation. It requires commuting measurements of stabilizers on code

layers, transversal teleportation of code structures between the layers, as well

as qubit preparation and measurements aimed at encoding and decoding of an

unknown quantum state.

2. Encoding of an unknown quantum state into CSS code

Work [B] is aimed at generalizing the procedure of encoding an unk-

nown qubit state into a Kitaev planar code to all CSS quantum error correc-

ting codes, which was introduced in [A]. We define the encoding of a state

|Ψ〉i = αi|0〉i + βi|1〉i of a physical qubit on Hilbert space Hi as a process un-

der which the logical qubit, defined on subsystem j of the logical subspace

Hlog = ⊗jHLj , is transferred to a state |Ψ〉Lj = αi|0〉Lj + βi|1〉Lj . The proposed

encoding scheme relies on the property of CSS codes, that all logical operators

are the tensor product of only one Pauli matrix type (σz or σx). The proposed

non-fault tolerant procedure applies to an arbitrary CSS code – nevertheless,

due to the simplicity of its generalization into a fault-tolerant regime for a to-

pological architecture, we restrict ourselves to this kind of code constructions.

The non-fault tolerant scheme of encoding un unknown qubit state into a

topological CSS code requires the preparation of states |0〉, |+〉 on the qubits

where the logical operators ZL and XL, respectively, are non-trivially defined.

Each of the logical operators acts non-trivially on qubits situated on curves that

connect code boundaries. Those curves cross at an odd number of qubits. Only

a qubit in a state to be encoded is put at one of these crossing points, whereas

pairs of qubits from different crossings (if they are present) are prepared in

maximally entangled states. Other qubits (those, on which the logical operators

do not act) can be prepared in an arbitrary state. Stabilizer measurements and

error correction bring the state of the system to the logical subspace. The proof

of correctness of the scheme relies on the fact that the joint parity of the qubits

situated on the logical operator curves, originally dependent only on the qubit

state to be encoded, remains so under the encoding procedure. This is achieved
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by applying a logical operator dual to the logical operator that was crossed

an even number of times by non-commuting correction paths. Nevertheless, in

part III we show that for Kitaev code on a torus [33], Kitaev code with defects

[34, 35], Bravyi sybsystem code [36] and Haah code [37] it is possible to perform

corrections in a way that they do not cross logical operator curves. Therefore,

applying logical operations to the code can be eliminated.

For many CSS codes, an extension of the above reasoning to the fault-

tolerant scenario is based on preparing qubits that surround curves of logi-

cal operators ZL and XL in states |0〉 and |+〉, respectively, and on the error

correction scheme based on a history of stabilizer measurements, similarly as

in work [A]. The manuscript [B] contains a description of the decoding of an

unknown qubit state from CSS codes. In part IV we calculate an upper bound

on the phase error probability of a quantum memory based on the proposed

algorithms applied to Bravyi subsystem code. We show that, in the limit of the

infinite code size, the fidelity of the quantum memory is of the order 1−O(p),

where p is the probability of local noise acting on qubits during one time step,

as well as the classical error probability of a stabilizer measurement.

It is worth noticing that, by enabling magical state encoding [8], the above

procedures can lead to the realization of universal quantum computation on

CSS codes.

3. Entanglement decay in systems of quantum dot spin qubits in the presence of the magnetic

field

In manuscript [C] we consider a connection between the value of sn external

magnetic field and the character and type of entanglement decay in a system of

two mutually noninteracting electron spin quantum dots in gallium arsenide.

Dipole-dipole interaction between nuclei in each of the dots, as well as their Ze-

eman interaction with the field are negligible for short evolution times in which

the entanglement decay occurs. The hyperfine interaction between electron spin

and an environment of nuclear spins in maximally mixed state constitutes the

main mechanism of decoherence, and the system Hamiltonian takes the form

H = H1 ⊗ 1+ 1⊗ H2, with single quantum dot Hamiltonians (3)

Hi = ΩŜz
i + D̂i + V̂i, (11)
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where Ω = −gµBB is the Zeeman splitting. The D̂i and V̂i operators describe the

hyperfine interaction between the spin (Ŝi) of an electron labeled by an index

i, and spins (Îk,i) of the nuclei labeled by k, with coupling constants Ak,i. The

term D̂i = ∑k Ak,iŜz
i Îz

k,i leads to dephasing, while V̂i =
1
2 ∑k Ak,i(Ŝ+

i Î−k,i + Ŝ−i Î+k,i)

results in dephasing and a change of occupation levels, using the standard

notation Ŝ±i = Ŝx
i ± Ŝy

i and Î±i = Îx
i ± Îy

i .

The constants Ak,i depend on nucleui positions with respect to the electron

wavefuntion. As the number of nuclei in a realistic quantum dot in gallium

arsenide is of the order of N ≈ 106, it is not possible to rigorously solve the

system evolution analytically nor numerically. Due to the slow internal dyna-

mics of the spin bath resulting from the weakness of dipole-dipole interactions,

the Markov approximation is not applicable. In the interesting regime of weak

magnetic fields (Ω � A = ∑k Ak,i), it is not possible to use a weak coupling

approximation. Nevertheless, we deduce from the energy-time uncertainty re-

lation [17] that in the time regime t � N
A ≈ 10 µs the exact distribution of the

Ak,i constants in gallium arsenide should be irrelevant. Therefore, we apply the

commonly used model [38, 39] and take Ak,i = A/N in both dots. As a result,

in the total angular momentum basis of the nuclei we obtain a block form of

a single dot Hamiltonian. It allows its diagonalization. In the appendix ([C])

we showed that coherence revivals stemming from the interaction with a small

number of nuclei are strongly suppressed with increasing N. As a consequence,

the evolution of a single dot can be effectively simulated by the interaction with

only 50 nuclei. In the regime of high magnetic fields (Ω � A), the Vi term can

be omitted (due to the conservation of energy in processes involving changes of

the electron spin occupation levels), and decoherence is limited to pure depha-

sing, with coherences decaying proportionally to e−t2/T∗22 , with characteristic

time T∗2 ∝
√

N/A. For smaller magnetic fields, oscillations of coherences re-

main correlated with oscillations of occupation levels. For very small magnetic

fields (Ω . A/
√

N) the occupation levels become partially evened.

We employed the concurrence function (4) as a measure of entanglement

between two noninteracting quantum dots. Due to the impact of the magne-

tic field value onto occupation levels of electron spin system, by modifying

the value of this external parameter of evolution one can change the charac-

ter of entanglement decay: from a Gaussian type to the one exhibiting sudden
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death of entanglement ([C], Fig. 1). The time of sudden death tSD increases

non-monotonically with the increment of the magnetic field B ([C], Fig. 2), di-

splaying a logarithmic dependence in the high magnetic field limit. We analyze

the possibility of detecting small magnetic field values by using the dependence

of the time of sudden death with a magnetic field. Inclined by an experimental

realization of a measurement of singlet state fidelity F in a double quantum

dot system (in a Pauli blockade regime [40]), we introduce an entanglement

witness W(t) = 1
2 − F(t) that satisfies the relations t < tSD =⇒ W(t) < 0

and t = tSD =⇒ W(t) = 0, which stems from the bistochastic character of

the quantum channels in both dots. We suggest that measurements of W(t) be

used in the regime of step dependence of tSD(B) as a threshold sensor of the

magnetic field.

4. Evolution of quantum correlations and protocols for magnetic field detection in systems of

quantum dot spin qubits

Work [D] is a continuation of research aimed at exploiting quantum noise

for magnetic field detection in quantum dot systems considered in [C]. Having

set the question whether entanglement is a necessary resource for magnetic

field detection (in the sense of work [C]), we investigate decay of quantum

correlations described by a rescaled geometric discord D (5). In comparison

with decay of entanglement, the decay of discord of Bell states is characterized

by the lack of oscillations visible in the entanglement evolution, as well as by

a revival for long evolution times, for small values of the magnetic field ([D],

Fig. 1). The revival can be used for magnetometric purposes in a range 0 −

5 mT - it is facilitated by the fact that its measurement is identical with the

measurement of the coherence in the system. The Change of the sign of the

function 1 − g(t) at time t0, g(t) = Tr(σz⊗σz$(t))
Tr(σx⊗σx$(t)) , is a necessary and sufficient

condition for discord non-differentiability at the time t0. For zero magnetic

field, transitions from a singlet to all triplet states are equally probable, which

implies g(t) = 1 for arbitrary t. For non-zero magnetic fields, decoherence

into triplet states is suppressed (due to the necessity of distributing the energy

coming from electron spin change to the environment). This leads to g(t) ≤ 1

for arbitrary time t. In this way, the energy conservation principle prevents non-

differentiability of a discord function to occur during the evolution of a singlet
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state.

Werner states are defined by

ρ = (1− p)I + pS0, p ≤ 1, (12)

where I is the identity operator acting on the Hilbert space of a two qubit sys-

tem, and S0 = 1
2

(
|01〉 − |10〉

)(
〈01| − 〈10|

)
is the projector on the singlet state.

Evolution of all Werner states (including separable (i.e. non-entangled) ones for

0 ≤ p ≤ 1/3 parameter values) show a qualitatively similar dependence on

the magnetic field. Fig. 3(a) ([D]) depicts the impact of the magnetic field onto

the presence of quantum correlations in the evolution of a separable state. The

presence is quantified by

M(B) =
1

D(ρ(0))

∫ τ

0
D(ρ(t))dt, (13)

with τ = 20 ns. Therefore, entanglement is not a necessary resource in the

magnetometric application of the electron spin qubits double quantum dot sys-

tems.

Another possible measurement method, applicable in the regime of weak

magnetic fields, can be based on the non-directly measurable function g(t). g(t)

exhibits a very strong dependence on the magnetic field B in a regime 0− 2 mT

([D], Fig. 2). As in the previous scheme, entanglement of the initial states is not

required – this comes from the fact that all Kraus operators characterizing a

single dot quantum channel either commute or anti-commute with single qubit

rotations. For the same reason a non-ideal state preparation ρ = (1− p)S0 +

pT0, where T0 = 1
2

(
|01〉+ |10〉

)(
〈01|+ 〈10|

)
is a projector on a triplet state

(that can be distinguished from a singlet in a Pauli blockade scenario), results

in a rescaling g(t) → 1
1−2p g(t). For small p it does not significantly influence

the sensitivity of the parameter under consideration to the magnetic field.

Moreover, we conclude that the system can display non-differentiability in

the evolution of quantum discord as long as an initial state is chosen properly

([D], Fig. 3). We show that the discord evolution of non-diagonal Bell states

depends strongly on non-local phase factors ([D], Fig. 4) – which remains in

contrast with the evolution of entanglement.
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C. Perspectives

We have summarized the results of our twofold approach to exploiting qu-

antum correlations in the presence of external noise. Below we describe possible

directions for future research in the two selected domains.

As the procedures introduced in publications [A] and [B] can be applied in

universal quantum computing protocols, one can examine the fidelity of enco-

ding a magical state into the considered code structures. One should take into

account distillation procedures and methods aimed at minimizing the propaga-

tion of the measurement errors into a code. Another goal would be to extend the

encoding fault-tolerant scheme into CSS topological codes defined on lattices

with higher dimensionality, which is motivated by their postulated applications

as self-correcting quantum memories. Tighter bounds on process fidelities wo-

uld serve as an indicator of the purposefulness of practical implementation of

the proposed procedures.

Studies of magnetic-field-influenced decoherence in electron spin double qu-

antum dot systems, presented in publications [C] and [D], can be supplemented

by the analysis of the impact on the decay of correlations that can be exercised

by the exchange interaction between electron spins, as well as by the merging

of environments of quantum dots. Both the effects appear for small distances

between the dots. Magnetometric properties of the considered systems can be

analyzed in terms of bounds for Fisher information of m independent quan-

tum channels [41], its scalling with m, as well as by the optimization of a single

measurement time with m [42]. Moreover, one can perform a search for an ob-

servable saturating the bound on the precision of magnetic field measurements.
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