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Summary of PhD Thesis

I. MOTIVATION AND MAIN GOALS OF PHD THESIS

It is well known that the language of the physics is mathematics, but also

something more 1. Mathematical structures using by physicists with so great

success not only describe nature, but also model its internal structure (so cal-

led mathematical modeling). Thanks to this incomprehensible up to this days

connection we describe not only world around us, i.e. we say how surrounding

us things are, but we can also using pure logic considerations to predict some

phenomenas, which we can not observe and feel explicitly. It because of mathe-

matical modeling we learn which properties we can neglect constructing some

experimental device or how to interpret result of measurements. In this disser-

tation author together with collaborators raise a series of problems from the

new branch of science, namely from quantum information theory. We descri-

be some aspects of group-theoretical description of quantum cloning machines,

distillation of entanglement and finally construction of new mathematical tools,

which help us with above mentioned mathematical modeling, this time in the

micro-scale regime.

Now we describe briefly motivation behind problem of quantum cloning

or entanglement distillation but the mathematical point of view. We start from

copying of quantum states.

Form the linearity of quantum mechanics we know that perfectly cloning of

unknown quantum state is forbidden. It is statement of famous co-cloning the-

orem given first time by Wooters and Żurek [1] and independently by Dieks [2].

Because preparation of perfect clones is forbidden somehow form the defini-

tion we can ask in the opposite way. Namely let us formulate the following

question: Is it possible to prepare clones which are close to input state? How

close to input state our copy can be - how good copy can we obtain 2? It turns

out that we have positive answers for the first question, reader can find deta-

ils in [3–7]. Also on the second question we have satisfactory answer, for both

1Mentioned philosophical problem is called: "The Unreasonable Effectiveness of Mathematics

in the Natural Sciences."
2Using word "close" we think about measure, which we called quantum fidelity.
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symmetric, universal cloning machines 3 and antisymmetric, universal cloning

machines 4 [8–10]. Despite significant progress in this topic in last years, up to

our best knowledge nobody gives connection between cloning machines and

structure of symmetric group S(n). Explanation of this connection is one of the

main goals of this PhD dissertation.

Second quantum informational aspect considered in dissertation is the en-

tanglement distillation. It is well known, that pure entanglement is one of the

most important resource in quantum information, we can mention here a few

classical results contained in [11–13]. However in the most of the practical ca-

ses we have access to mixed entanglement, which is no longer such useful and

universal as pure one. To obtain pure entanglement, usually in the form of

maximally entanglement pairs we should be able somehow distill them from

initial mixture. Procedures which allow us for such filtering we called distil-

lation protocols and they are realized by LOCC 5 operations [14–17]. If two

observers share n copies of state consists mixed entanglement, and then they

use distillation protocol, then as a result they should get pure entanglement in

the form of the state which is close to m (m < n) copies of maximally entangled

state, and the limit limn→∞
m
n we called efficiency of the protocol. In this dis-

sertation we present some distillation protocol for entanglement distillation for

which description we make a use very strong tools form representation theory

of symmetric group S(n).

As we can see from above description the main link for all the topics of

representation theory of symmetric group S(n) and some of its modifications

about which we write later. Because we deal with properties of very large class

of objects (groups) it worth to say before main part of this summary a few

words about methodology which authors have used here. We start form well

known Schur-Weyl duality [18] and then we define some mathematical problem

which extends mentioned dualism onto larger class of objects.

Let us consider n−partite Hilbert space H⊗n, wherein we assume that H ∼=

Cd and d ∈ N is the dimension of every copy H. It is known that every operator

X :
(
Cd)⊗n →

(
Cd)⊗n, which commutes with unitary operations of the type

3Quantum fidelities of all clones calculated respect to initial state are identical.
4Quantum fidelities for all clones calculated respect to initial state do not have to be equal.
5Local Operations and Classical Communication
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U⊗n, i.e. satisfies relation [
X, U⊗n] = 0, (1)

can be written as some linear combination of permutation operators V(σ):

X = ∑
σ∈S(n)

a(σ)V(σ), (2)

where a(σ) for σ ∈ S(n) are some, known coefficients of combination, and

operators V(σ) act on the basis vectors |ei1〉 ⊗ · · · ⊗ |ein〉 of spaceH⊗n as follows

∀σ ∈ S(n) V(σ)|ei1〉 ⊗ · · · ⊗ |ein〉 = |ei
σ−1(1)
〉 ⊗ · · · ⊗ |ei

σ−1(n)
〉. (3)

Therefore, to know irreducible components of operator X it is enough to know

irreducible components of every operator V(sigma) separately.

Speaking more precisely, whenever we deal with the problem, that operator

X possess property given by the equation (1) we can use representation theory

to reduce our problem to study operators V(σ) in the block-diagonal form, i.e.

V(σ) =
⊕

λ

Vλ(σ), (4)

where direct sum runs over all irreducible representations λ of the symmetric

group S(n).

Going further we can use Schur-Weyl dualism [18], which states that du-

ality between irreducible representations of symmetric group and full linear

group 6. Thanks to above-mentioned dualism we write every element of the

direct sum (4) as

Vλ(σ) = 1Uλ ⊗VSλ (σ), (5)

where symbols U ,S denote these parts of the operator which acts on the unita-

ry and symmetric space respectively. From the equation (5) we see additionally,

that every component Vλ(σ) has tensor structure, wherein non-trivial part acts

only on symmetric part. Therefore to learn about irreducible components of

the operator X it is enough to know irreducible components of every Vλ(σ),

where multiplicities are given as the dimension of the operator 1Uλ . Descrip-

tion of the symmetric part, speaking more precisely, way of calculation matrix

representations of VSλ (σ) is given by the Young-Yamanouchi construction [19].

6Reader notices that in this summary we are interested in subgroup of the GL(n,C), namely

group of the unitary matrices U(n,C).
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Now we can ask, what happen if in the above construction our operator

X would be invariant respect to transformation of the type U⊗(n−k) ⊗U∗⊗k. It

means when [
X, U⊗(n−k) ⊗U∗⊗k

]
= 0, (6)

where ∗ denotes complex conjugation. It can be proven, then operator X can

be written as a linear combination of permutation operators V(σ), but partially

transposed over k last subsystems 7

X = ∑
σ∈S(n)

b(σ)VΓk(σ), Γk = Tn−k+1 · · · Tn, (7)

where Ti for n− k + 1 i n denote standard transposition on the ith subsystem.

In this dissertation we confine ourselves to the simplest, but non-trivial case,

when k = 1, i.e. when partial transposition acts on the last nth subsystem.

Therefore our task is to find decomposition of the operators VTn(σ) similarly

as in equations (5), (6) and also present construction method of the irreducible

matrix representations (Paragraph c).

Having knowledge about decomposition of the operators form formulas (2)

and (7) into irreducible components , together with their matrix representations

we can use them (full explanation in the next chapter) to group-theoretical and

algebraic description of the cloning machines (Paragraphs a,b) or calculation

efficiency of some entanglement distillation protocol (Paragraph d).

II. SUMMARY OF RESULTS CONTAINED IN PHD THESIS

Papers consisting for this dissertation, i.e. articles form the positions [A-E]

we can divide in three groups. The first group, that is papers [E] and [D] exploit

known method from representation theory of finite groups with special empha-

sis on symmetric (permutation) group S(n) for such problems as distillation of

entanglement by projection on permutationally invariant subspaces or group-

theoretical description universal, qubit 8 cloning machines. The second group

of the papers, form the positions [C], [B] consists construction of the irreducible

7It worth to say here, that assumptions about conjugation last k operations U does not de-

crease generality of the problem. We can always apply proper rotation to obtain demanding

form.
8Quantum-mechanical system described on two-dimensional Hilbert space.
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representations partially transposed permutation operators, generalizing and

expanding existing knowledge about permutation operators. Finally the last

paper form the series, i.e. position [A] uses previously developed mathematical

tools to extend results form [D] for higher-dimensional cases. Now we describe

shortly results form every paper starting from the problem of quantum cloning,

both qubit and qudit cases (Paragraphs a,b), then we focus on the construction

of some special mathematical tools (Paragraph c) and we end on the mathema-

tical problem connected with distillation of entanglement (Paragraph d).

a. Group-theoretical approach to universal quantum cloning machines

In the paper [D] we present group-theoretical approach to the problem when

states which we want to clone are maximally entangled qubit states, for exam-

ple one of the Bell sate of the form 9:

|ψ+〉 = 1√
2
(|00〉+ |11〉) . (8)

The main goal of the paper [D] is description in the analytical way allowed

range of fidelities for the 1 → N universal, qubit cloning machines 10, which

follows from the laws of quantum mechanics by the application representation

theory of symmetric group S(n). Speaking more precisely, we want to find

analytical constraints for the following quantities:

F1i ≡ F
(
Φ+, Tr1i ρ1...n

)
= Tr

[√√
Φ+ Tr1i ρ1...n

√
Φ+

]
, (9)

where Φ+ = |ψ+〉〈ψ+|, quantity ρ1...n is the joint state after application of the

cloning machine and Tr1i ρ1...n reduced state of ith copy 11. For the analysis of the

problem we use knowledge which are described shortly in the first chapter of

this summary. It turns out that in the two-dimensional case (qubits) maximally

entangled singlet states (see equation (8)) are U ⊗U invariant. This property

allows us to write joint state after application of the cloning machine as

ρ1...n =
⊕

λ

1Ur(λ) ⊗ ρ̃λ, (10)

which is also unitary invariant respect to unitary transformations U⊗n. In the

equation (10) by r(λ) we denote the dimension of the irreducible representation

9Of course we can use also other Bell states.
10In this dissertation we use the following convention: Number of the copies we denote by

capital N, but n = N + 1, where n is the degree of the symmetric group S(n).
11By the Tr1i ρ1...n we denote partial trace over all subsystems, except the first one and the ith

one.
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corresponding with partition λ, while ρ̃λ is irreducible representation of the

density operator ρ1...n acting on symmetry part. Thanks to this property, we

show that calculating quantum fidelity F1i between qubit input sate ρ and ith

copy can be reduced to calculating fidelity on the permutationally invariant

subspace, which follow from the decomposition of the permutation operators

V(σ) into irreducible components (Lemma 1):

F1i = ∑
λ

Fλ
1i, where Fλ

1i =
1
2
− 1

2
Tr
(

ρλ VSλ (1i)
)

, (11)

where VSλ (1i) denotes irreducible representation of the permutation operator

V(σ), when σ = (1i). Next important step on the way to solution is the obse-

rvation, that to obtain whole allowed range of fidelities it is necessary to take

convex hull from the set of all calculated fidelities for all possible copies 1 < i n

and representations λ (Theorem 1):

F = conv

(⋃
λ

{(
Fλ

12, . . . , Fλ
1n

)
: |ψ〉 ∈ Cdλ

})
. (12)

The main part of the paper [D] ends with the proof of Lemma 3, which states

that to generate convex hull from the Theorem 1 is necessary and sufficient

to take only the real states. In other words we have shown some kind of ma-

jorization of the complex states by the real ones in the case of such type of

cloning machines. In the paper [D] we put additionally graphical representa-

tions for allowed rage of fidelities in the case of 1 → 3 cloning machines, for

every irreducible representation separately (Figure 2) and after generation of

the convex hull (Figure 3). We show also how we can apply described method

to reconstruction quantum states with certain constraints of fidelities, in the

case allowed by theory (Chapter VF).

b. Algebraic description of cloning machines The paper [A] is the gene-

ralization of the results from [D] for the case when as the input state for cloning

we take maximally entangled qudit 12 state

|ψ+〉 = 1√
d

d

∑
i=1
|ii〉, (13)

where d is the dimension of Hilbert space on which our state is described.

It turns out that in the case d > 2 we can not apply directly known tools from

representation theory of symmetric group S(n) as in the qubit case. This situ-

ation follows from the fact, that states from the equation (13), for d > 2 are no

12Quantum-mechanical system described on d−dimensional Hilbert space.
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longer U ⊗U invariant, but there are U∗ ⊗U invariant 13. Different symmetry

in the higher-dimensional case causes, that the joint state ρ1...n after application

of the cloning machine is invariant respect to transformations U∗ ⊗U⊗(n−1). If

we still want to have representation approach to the problem the necessary is

knowledge about irreducible components of the algebra 14 of partially trans-

posed permutation operators VTn(σ). It is clear now that the crucial role here

play mathematical tools which are described in the Paragraph c) of this sum-

mary. Authors of the paper [D] show, that fidelities between input state and an

arbitrary clone can be written as irreducible representations of partially trans-

posed permutation operators VTn
α (k− 1 n), where 1 < k n obtained in [C], [B]

and density operator ρα acting on particular irreducible subspace labelled by

partition α. Namely we have (Lemma 1):

FM1k = ∑
α

Fα
1k, where Fα

1k =
1
d

Tr
[
ρα VTn

α (k− 1 n)
]

, (14)

where d is the dimension of the Hilbert space. We have to stress here that we

introduce index α instead of λ as in the qubit case to distinguish appropria-

te representations. From the papers [B] and [C] we know that algebra Atn
n (d)

splits into sum of two spaces M and An−1(d), wherein formulas (14) describe

fidelities calculated for the elements from the ideal M. In the case of the ideal

An−1(d) formula for fidelities reduces to the simply equation:

FN1k =
1
d

. (15)

Further, similarly as for qubit case authors show, that to obtain allowed region

of fidelities for 1 → N universal qudit cloning machine is necessary to take

convex hull from the set of all possible copies 1 < i n and representations α

(Theorem 3). Moreover they argue that still majorization of the complex states

by the real ones in the sense of fidelity is valid (Lemma 4).

c. Irreducible representations of partially transposed permutation ope-

rators For this part of dissertation consist papers [C] and [D]. They show

equivalent approach for the same problem, namely to problem of finding irre-

13By ∗ we denote complex conjugation.
14Reader notices that the set of permutation operators creates group, in particular every ele-

ment have inverse. However the set of partially transposed permutation operators creates an

algebra, so there are some element for which inverse does not exist.
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ducible representations of the algebra ATn
n (d) partially transposed permutation

operators VTn(σ), which were described in the first part of this summary.

Although these two papers treat on the same issue, but they give different

insight into structure of the problem, and moreover article [B] is important

extension results from [C] for low-dimensional cases and gives us connection

with the structure of some induced group. Let us say now a few more words

about problems connected with these two approaches. We start from the paper

[C].

In this article we start from the level of Hilbert space and construction of

vector bases spanning every irreducible subspace (Definition 4). This allows us

to construct non-orthogonal operator basis in Hilbert-Schmidt product (Defini-

tion 5, Lemma 8). At this level the crucial observation is the fact, that there is a

some set of mappings F t
ab, which connects elements of the algebra C[S(n− 2)]

with the elements ofM:

C[S(n− 2)] 3 V(σ)
F t

ba7−→V′(σab) ∈ M. (16)

Form the linearity of mappings F t
ab we know, that following is true:

C[S(n− 2)] 3 Eα
ij
F t

ba7−→ vab
ij (α) ∈ M, (17)

where operators Eα
ij are well defined Wigner operators for the symmetric group

S(n− 2). Above formulas imply directly Theorem 9, which is one of the crucial

results in described paper. This theorem states how to represent partially trans-

posed permutation operators by non-orthogonal operator basis and vice versa,

and also allows us to calculate action of VTn(σ) on mentioned operator basis.

Unfortunately as we have mentioned above, our basis is non-orthogonal, so

we can not to calculate matrix representations of VTn(σ) in the sense how we

used to in physics. To solve this problem we use matrix Q(α) (Definition 11),

which is Gramm matrix of the basis vectors from the Definition 4. This matrix is

block-diagonal and possess a lot of interesting properties, which determine our

further approach. Namely blocks of the matrix Q(α) are the matrix represen-

tations appropriate transpositions (Definition 11, Remark 12) and what is the

most important, because this is the Gram matrix it can happen that for certain

relations between dimension d of the Hilbert space and number of subsystems

n our set of vectors in linearly dependent. This implies that matrix Q(α) is

non-invertible for some cases. Detailed analysis of this problem is given in the
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Theorem 13, which states that whenever d > n − 2 Gramm matrix is always

invertible. It turns out that whenever we are in the regime d > n− 2 we can re-

define by matrix Q(α) our non-orthogonal operator basis to obtain orthogonal

one in the Hilbert-Schmidt product (Definition 14). In the next step we define

left action of the new, orthogonal basis operators on VTn(σ) (Proposition 16)

and present the procedure of calculating desired matrix elements of irreducible

representations (Lemma 18).

Paper [C] says also a few words about case when d n− 2 (Chapter IV.B), but

it does not give us satisfactory answer in the language of vector basis of Hilbert

space. Authors show, that to construction of irreducible representations it is

necessary and sufficient to choose from the set of linearly dependent vectors

some subset which is linearly independent and next make an argumentation

as in the case when d > n − 2. It causes obvious reduction of the dimension

our new operator basis (Example 19). Unfortunately this procedure does not

present any effective method how to choose properly linearly independent set

of vectors and also how to connect this with the global properties of the algebra

ATn
n (d).

Different approach to the problem of finding irreducible representations of

partially transposed permutation operators VTn(σ) which fills the gap of small

dimensions d with respect to the number of subsystems n is presented in [B].

In this paper authors treat algebra ATn
n (d) in the abstract way and use some ad-

vanced algebraic techniques. The most important property in this approaches

is to notice, that algebra ATn
n (d) consists sub-algebra An−1(d) generated by ope-

rators representing sub-group S(n − 1) ⊂ S(n), which are not deformed by

partial transposition Tn. This observation allows us to split algebra ATn
n (d) into

two sum of two subspaces:

Atn
n (d) =M+ An−1(d), (18)

where subspace M is the ideal generated by the operators VTn(σ), when per-

mutation σ acts on n in non-trivial way 15. Additionally elements generating

ideal M are non-invertible, which shows that adding even only one partial

transposition changes structure of the problem a lot.

Another very important result contained in paper [B] is the connection of the

15i.e. when σ(n) 6= n
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structure of the algebra ATn
n (d) with the structure of the induced representation

indS(n−1)
S(n−2)(ϕα) of the group S(n− 1) induced by irreducible representations ϕα

of S(n− 2) (Chapter IV). More precisely authors show, that all eigenvalues of

the matrix Q(α) are labelled exactly by irreducible components of indS(n−1)
S(n−2)(ϕα)

and their multiplicities are equal to dimension of such representation (Theorem

31). In the next, fifth chapter construction of irreducible representation of the

operators VTn(σ) is presented. The starting point is Definition 39, where we de-

fine the set of generators {u(α)} of the idealM together with the composition

law and the form of left action on operators VTn(σ) (Proposition 43). Further,

similarly as in [C] authors move to the new set of generators, which posses

required property of orthogonality (Definition 48) and also present formulas

for the matrix elements of irreducible representations of the VTn(σ) operators

(Proposition 52) using facts for the generators u(α). The crucial point of this

paper is the extension results form article [C] for the case when det Q(α) = 0,

i.e. when matrix Q(α) does not have inverse. It means, that some generators

u(α) are linearly dependent. Authors present general construction (Theorem

77), which follows to the reduced basis and gives us constructive approach to

both, linearly dependent case as well to generic case, when rank of the matrix

Q(α) is maximal. This result is based on diagonalization of the matrix Q(α)

(Theorem 59) and next, use it for the construction new, consists non-generic ca-

se set of generators. It turns out that whenever det Q(α) = 0, then only for one

(up to multiplicity) irreducible representation of the group S(n− 2) appearing

in indS(n−1)
S(n−2)(ϕα) corresponds zero eigenvalue of Q(α). Then of course genera-

tors which correspond to this zero eigenvalue are zero operators and the rest

of the span above mentioned, reduced operator basis. At the end it is worth

to say that authors present also relative simply algorithm of finding all eige-

nvalues of the matrix Q(α) and "rejection" of the linearly dependent generators

(Appendix A) based on Frobenius theorem [18]. Thanks to this we obtain the

full description of the algebra ATn
n (d) together with the construction of irredu-

cible components and discussion of all its properties with explicit connection

to induced group.

d. Entanglement distillation by projection on permutationally invariant

subspaces In the paper [E] authors consider distillation problem of quantum

entanglement form the two-qubit state, which is mixture if two pure, entangled
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states and one product state orthogonal to them:

ρAB = xρ′AB + (1− x)|01〉〈01|AB, x ∈ [0, 1], (19)

where ρ′AB is in general non-equal mixture of two states of the form:

|Φ±(p)〉AB =
√

p|00〉AB ±
√

1− p|11〉AB, p ∈ [0, 1]. (20)

In the considerations we assume, that n copies of the state ρAB is shared be-

tween two peoples, called Alice (lower index A) and Bob (lower index B). After

application of proper protocol (Chapter II) our task is to fond analytical expres-

sion for the eigenvalues of density operator, which form follows from the con-

struction of the protocol. Mentioned state after measurement has a form:

ρ
(n)
lAB =

PlA ⊗ PlBρ⊗n
ABPlA ⊗ PlB

Tr(PlA ⊗ PlBρ⊗n
ABPlA ⊗ PlB)

, (21)

where n denotes number of copies of the state ρAB shared between Alice and

Bob. Projectors PlA, PlB project onto subspaces H(n)
l of space (C2)⊗n spanned by

vectors of the standard basis with Hamming weight equal to l, i.e. vectors po-

sses l ones and n− l zeros. Canonical example of such vector is | 0 . . . 0︸ ︷︷ ︸
n−l

1 . . . 1︸ ︷︷ ︸
l

〉.

The knowledge spectrum of the state operator ρ
(n)
lAB allows us to calculate effi-

ciency of distillation protocol Ri, which is proportional to coherent information

Ic

(
ρ
(n)
lAB

)
. Further we show that density matrix ρ

(n)
lAB can be represented as a

linear combination of the operators A(l)
k acting on the subspaces H(n)

l spanned

by the vectors with definite number of ones (Lemma 1). Therefore knowled-

ge about spectrum of all operators A(l)
l guarantees knowledge about spectrum

of density operator ρ
(n)
lAB. Second important observation on the way to final

result is fact, that subspaces H(n)
l are invariant respect to acting of the permu-

tation group S(n). This fact allows us to write every subspace H(n)
l as a direct

sum of irreducible subspaces labelled by Young diagrams maximally with two

rows (Lemma 4). Together with some complicated combinatorics and group-

theoretical statements contained in Proposition 3, Lemma 5 and Lemma 6 we

can prove formula (41) from the Theorem 1, which represents analytical recipe

for eigenvalues of the operators A(l)
k and immediately gives us also spectrum

of operator ρ
(n)
lAB.



12

III. FURTHER PERSPECTIVES

At the end of this dissertation summary it is worth to say a few words about

further possibilities of investigations. More of them are somehow extensions of

ideas from previous sections. The first, and the most direction of future inve-

stigation is looking for irreducible representations of partially transposed per-

mutation operators VΓk(σ) in the case of larger number of single transpositions

as it was in papers [C] and [D]. We assume of course, that partial transposition

has a form Γk = Tn−k+1 ◦ · · · ◦ Tn, where every Ti for n − k + 1 i n denotes

standard transposition on ith subsystem. Possibly result will extend knowledge

not only about representation theory onto new class of objects, but also gives

us interesting applications in quantum information theory. Let us mention here

about two possibilities.

Let us start form the possibility of description N → M universal quantum

cloning machines, when we have N input states and M clones (of course we

have to assume that M < N and M + N = n). Main goal of this problem wo-

uld be similarly as in [A,D] analytical description of allowed region of fidelities

which follow from the laws of quantum mechanics by using again representa-

tion theory.

The second one, much more complicated task would be application to ad-

ditivity problem of quantum channels. Knowledge about irreducible represen-

tations of the operators VΓk(σ) allows us to obtain analytical expressions for

minimal output Rényi entropy for two copies of the channel. Every such chan-

nel would be defined on permutationally invariant subspaces suggested by

the Schur-Weyl duality. Thanks to this we should be able to answer for which

combinations of parameters as local dimension of Hilbert space d, number of

subsystems n and for which subspaces we obtain desired additivity violation.

data i podpis doktoranta
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