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Optical Gaussian beam interaction with a one-dimensional temperature field in the form of a thermal
wave in the Raman-Nath configuration is analyzed. For the description of the Gaussian beam propaga-
tion through the nonstationary temperature field the complex geometric optics method was used. The
influence of the refractive coefficient modulation by thermal wave on the complex ray phase, path, and
amplitude was taken into account. It was assumed that for detection of the modulated Gaussian beam
parameters two types of detector ean be used: quadrant photodiodes or centroidal photodiodes. The in-
fluence of such parameters as the size and position of the Gaussian beam waist, the laser—screen (de-
tector) distance, the thermal wave beam position and width, as well as thermal wave frequency and the
distance between the probing optical beam axis and source of thermal waves on the so-called normal
signal was taken into account. © 2009 Optical Society of America

OCIS codes:

1. Introduction

The analysis of space—time distributions of tempera-
ture fields in various objects is useful for nondestruc-
tive testing of these objects’ different characteristics.
The usefulness of this research method stems from
the combination of different ways of stimulating tem-
perature fields and different ways of measuring and
imaging these fields. Application of optical methods
seems very favorable. Application of lasers makes it
possible to generate temperature fields in various ob-
jects and samples easily by selecting the appropriate
length of the light wave and also the power, the size
of the laser beam, and ways of modulating the beam.
The laser beam can also be used to detect the gener-
ated temperature field and for this purpose a tested
object of various characteristics or its surrounding
dependence on temperature is used.

One temperature field detection method is the
refractive coefficient dependence on temperature, ob-
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served when rays of light are transmitted to the
probe beam or its surrounding medium. This is the
photodeflection method, which is also called the mi-
rage effect. The theoretical description of this meth-
od was presented for the first time by Murphy and
Aamodt [1,2]). They approximated the probing beam
through a single light ray and used geometric optics
methods to describe its propagation through the
temperature field. In such a case only a probing
ray deflection in the temperature field is taken into
consideration. This theory was extended and is also
included the case of a wide probing beam (“multiray”)
by using statistical methods [3-5].

It should be mentioned that taking limited sizes of
the probing beam into acecount in photodeflectional
investigations is important. Since the time-changed
thermal field vanishes quickly because of its distance
from the heat sources (see [6]), the large light beams
used in those investigations are not reasonable, con-
trary to the acousto-optical Raman—Nath interaction
where they are often applied. However in some
acousto-optic applications focused optical Gaussian
beams are also used (see [7]). Between the
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acousto-optic interaction and the photodeflection
phenomenon there is a formal similarity: the acous-
tic wave in the former was replaced by a time—space-
modulated thermal field in the latter. Because of this,
similar methods can be used to describe both effects,
but in the photodeflection phenomenon one should
comply with the specific properties of the thermal
fields.

The alternative for geometric optics is, naturally,
wave optics. The wave description of the deflection
method was presented by Glazov and Muratikov
[8,3]. In order to describe a probing beam these
authors used paraxial approximation and took into
account its phase change caused by the temperature
field. The advantage of the wave approach is the fact
that it considers interaction of the whole probe beam
and the temperature field at the same time. It should
be noted that both theories include different aspects
of the same phenomenon: deflection of the optical
beam is caused by a refractive coefficient gradient
in the transverse direction relative to the beam pro-
pagation direction, while allowing a change of phase
in light waves generally describes changes in their
propagation, including the wavefront form. Despite
these differences, both theories correctly describe
the results of measurements performed by means
of the photodeflection method under the condition
that suitable experimental setups fulfill the assump-
tions of the adequate theory.

It should be noticed that such a situation is quite
strange. In every real photodeflection experiment the
optical probing beam is influenced by deflection
and changes of the phase as well. A correct theory
deseribing such an experiment should include hoth
effects. The phase effect within the confines of geo-
metric optics (the complex one) was taken into ac-
count for the first time in the author’s work [10]
and was presented during the 7th Spring School
on Acousto-Optics and Application organized by A.
Sliwinski and his collaborators. The influence of both
phase and deflection effects on the photodeflectional
signal within the confines of complex geometric op-
tics was presented for the first time in the work by
Bukowski and Korte [11]. The problem was further
developed at the Department of Applied Physics of
the Institute of Physics of the Silesian University
of Technology. The latest results were presented in
[12-14].

In this work optical Gaussian beam interaction
with temperature field in a one-dimensional thermal
wave propagating in gas over the sample was
analyzed. The configuration of interacting fields is
analogous to the Raman—Nath acousto-optic interac-
tion. To describe that interaction complex geometric
optics methods were used, but a new form of analy-
tical continuation to complex space of the refractive
coefficient changes caused by a thermal wave was as-
sumed. Thanks to that new form it was possible to
abandon some approximations used in previous
works, and the obtained results have wider applica-
tion. Two kinds of a probing beam detector, a quad-
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rant photodiode and a centroidal photodiode
detector, were considered. The detector signal depen-
dence on many parameters of the experimental setup
was analyzed, especially the dependence on a prob-
ing beam radius and the location of its waist (or the
location of an investigated sample). We also observed
that the sample provided a screen that prevented a
portion of the beam from reaching the detector.

2. Experimental Setup and Basic Equations

The scheme of the experimental setup that is ana-
lyzed in this work is shown in Fig. 1. The laser prob-
ing beam of a basic mode begins its run in the z =0
plane, goes through the thermal wave field in gas
over the sample, and falls into the detector. Depend-
ing on a beam height i over the sample and its radius
b,, in the sample region a part of the beam can be cut
by the sample. It can be assumed thatif 2 > 2b,, cut-
ting the beam by the sample is insignificant (the
CGaussian beam transfers over 98% of its energy
through a circular aperture of a radius of 2b,).

A. Geometric Optics Equations

Propagation of a harmonic light wave in an optically
nonhomogeneous and isotropic medium can be
approximately described by the scalar Helmholtz
equation [15,16]:

Au(#) + kEe(F)u() =0, (1)

where u(F) is a spatial distribution of the wave elec-
tric field intensity (in the point 7), kg is its wavenum-
ber in a vacuum, and &(F) = n%(¥) describes the
spatial distribution of the examined medium permit-
tivity (square of the refraction coefficient). Within
the confines of geometric optics, solutions of this
equation are sought in the form [16]
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Fig. 1. Experimental setup for the solid state photothermal in-
vestigation with photodeflectional detection. The uniformly gas-
heated region has a width of Az = z, -z, and its left edge is at
a distance z from the system beginning (the light beam “input”).
The light beam waist has a radius of b, and is placed at distance L
from the beam “input.” b, and by are the probing beam radii over
the sample center and at the detector, respectively. The probing
beam axis runs at height h over the sample surface and is perpen-
dicular to the thermal wave column (Raman-Nath configuration).
The detector plane coordinate is equal to zp.




u(?) = A(P¥) exp(ikoy (7)),

Here, the quantity y(7) is called wave eikonal, and
the wave amplitude A(F) expansion in the series re-
lative to wavenumber reverse powers is called the
Debye expansion or the Luneburg—Klein expansion.
Equations for the eikonal and amplitudes of m orders
(transport equations) have the form

(Vi) =n*()
Q(VAO)O(\—?I;I) +AgAy =0
(

VA, )o(Vy) +A, Ay =—-AA,,_;, m=12,...

(3)

In geometric optics formalism, the solutions for these
equations are sought using the Hamilton method,
which leads to the following equations for light rays:

{

Here, p means a ray momentum and 7 is a running
coordinate along the ray. The ray goes out from the
point of the coordinates (&,5) defined on the given
output surface (in this case the plane z = 0). On this
surface the amplitudes distribution A,, and the eiko-
nal y must be given (boundary conditions). General
solutions for the eikonal equation and the zero order
amplitude equation are as follows:
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where D(z) is a Jacobian determinant of a transition
from ray coordinates (,1,7) to Cartesian coordinates
(x,y.2). Integration in relation for the eikonal is done
along the ray’s trajectory. It was assumed that on the
output plane z = 0 we have r = 0.

B. Gaussian Beam in a Homogeneous Medium

Ifthe boundary conditions are assumed in the form of
the Gaussian amplitude distribution of the electric
field intensity in the output plane, the application
of the above equations to an optically homogeneous
medium with refractive coefficient ny leads to the
propagation into the OZ axis positive direction
beam’s relation for the basic Gaussian mode
(10,17,18]

u(E ) 2 Ey “Re exp [ikgng ({nor -L)

ZRe + i?l-(}’!’

2 2
o s i z—”—)} (6)

2ZR ZR

but the rays’ equations are as follows:

X :f(l+i§£§)

y —i](1+i§;;:) x (7)
2= n.gr\ 1+ 52:5”2
Re

Here we have zp, = zg —iL and zp = kongby?, where
by is the intensity radius of the Gaussian beam in its
waist. The quantity zp is called a Rayleigh length for
the given Gaussian beam, and zp. can be called a
complex Rayleigh length for that beam. I, is the elec-
tric field intensity on the beam’s axis in the output
plane. It can be seen that the rays run in the complex
space. Determination of the electric field intensity
distribution of that beam in the detection place de-
mands solutions for Eq. (7) relative to ray coordi-
nates & 5 and 7. It is a nonlinear setup, and it is
usually solved by linearization with application of
the paraxial approximation |(&% + n%)/2%.| < 1.

C. Thermal Waves in Gas Over the Sample

The form of the temperature distribution in gas over
the sample depends on many details of the experi-
mental setup, which manifest themselves in ade-
quate equations and boundary conditions. In this
work a model situation was considered. The assump-
tions were as follows: 1°, the temperature distribu-
tion in gas over the sample is described by the
Fourier—Kirchhoff equation for a homogeneous med-
ium; 2°, a stimulated beam provides an energy
stream that is even on the whole surface of the sam-
ple and stationary harmonically in time with an an-
gular frequency (; 3%, changes of gas temperature in
areas that are not located directly over the sample
can be omitted; 4°, continuity conditions for tempera-
ture and heat flux are valid on the border of the sam-
ple and gas; 5° the sample sizes in transverse
dirvection relative to the probing beam are much big-
ger than the beam diameter over the sample. In such
a situation the temperature distribution in the re-
gion over the sample is a one-dimentional distribu-
tion and shows a so-called thermal wave:

T(x.z) - Ty = Y{x,2) = [@, + Yy exp(-ky(x + h))

x cos(Q — ko(x + h) + 15)|AH(2:21,2)). (8)
In this formula the following symbols were used:
kg = [Q;’{‘ngijl 2 _ wavenumber of the thermal
wave, T is the surrounding temperature (constant),

x, is the thermal diffusivity of the gas, 7, is the phase
sﬁift between the stimulated beam and the sample
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surface temperature, ¢, is the constant gas tempera-
ture increase over the sample, and 9, is the harmonic
amplitude of temperature changes on the sample
surface. Furthermore, AH(z,21,2,) = H(z - zp)
—H(z - z;), where H({) represents the Heaviside step
function. It can be seen that, although the Fourier—
Kirchhoff equation is not a wave equation, its
solution has a wave character because harmonic
boundary conditions were applied. The characteristic
of these thermal waves is that their wavenumber and
attenuation coefficient depend on the wave frequency
and always have the same quantity. This means that
these waves are strongly damped waves with a
strong dispersion. Their group velocity in the air
for frequency jf=100Hz amounts to about
0.33 m/s. Furthermore, it should be mentioned that
the parameters 3, 0,, and y, depend significantly on
the sample characteristics and that the aim of photo-
deflectional measurements is to gain these para-
meters’ quantities.

3. Probing Gaussian Beam Interaction with a Thermal
Wave

A thermal wave in gas causes space—time changes of
the refractive coefficient of the gas. A probing light
beam propagating in such an optically nonhomoge-
neous medium changes its parameters. Whithin the
confines of geometric optics the following effects in
thermal wave's influence on the probing light beam’s
propagation can be distinguished:

1° Phase effect, the refractive coefficient change
causes the change of the probing beam phase (of the
light ray) and thus the change of its eikonal; these
changes depend on refractive coefficient changes
along the probing beam propagation direction.

2° Deflection effect, a refractive coefficient change
causes a beam (ray) propagation direction (continu-
ous) change; these changes depend on refractive coef-
ficlent gradient in the perpendicular direction
relative to probing beam propagation direction.

3° Refractive effect, a refractive coefficient step
change on the borders of the area with the thermal
wave causes probing beam (rays) refraction, i.e., pro-
pagation direction step changes.

4° Amplitude effect, refractive coefficient changes
cause a beam divergence change and thus a wave
(ray) amplitude space distribution change.

It should be emphasized that usually these effects
do not appear in a pure form but are reciprocally
conjugated. For example, beam deflection generally
entails beam phase changes, and its divergence
changes as well, and thus amplitude changes. Within
the confines of geometric optics such “conjugate
effects” are also considered.

A. Dielectric Permittivity in Gas with a Thermal Wave

In standard photodeflection measurements global
temperature changes of the sample and surrounding
gas are at the level 1K and the temperature chan-
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ging amplitudes are at the level of millikelvins. In
this situation it is possible to limit to a linear factor
describing temperature’s influence on the refractive
coefficient change:

dn

niT) =g J.ed—T (T —Ty) = ng +ngsp(T - Ty),

ITy
(9)

where s; is the temperature sensitivity of the refrac-
tive coefficient. In that case a gas electric permittiv-
ity in a thermal wave region is expressed by the
relationship

(T = R3(T) = n% +uv(F). v(F) = 211337-9[.1:.2').

(10)

Here v (/) means medium electric permittivity distur-
bances caused by a thermal wave. Equation (10)
should be used in Eq. (1) and in the equations that
follow. However, refractive coefficient thermal sensi-
tivities for gases are of the order of =5 x 106 K1,
which in combination with a gas temperature causes
changes in the amplitude in thermal waves of the or-
der of 10K means that the refractive coefficient
changes amplitude is of the order of 107", In this si-
tuation it is justified to apply a perturbation calculus
in calculations, but the product s4+8, plays the role of
a perturbation parameter. )

As has already been mentioned, in a geometric de-
seription a Gaussian beam consists of rays that run
in a complex space. In that case the problem of the
analytic continuation of Eq. (10) to the complex space
is of great importance. In former works (for example,
[10,12]) Eq. (10) was directly used, and in them x and
v coordinates took complex values. Taking into con-
sideration the fact that in the end only the real part
of obtained solutions has physical sense, it is possible
to complete Eq. (10) with an adequately matched
imaginary part. A considerable simplification of
the calculations may be expected when in Eq. (10)
the cosine’s trigonometric function is replaced with
an exponential function of an adequate imaginary ar-
gument:

ul(F) = 2n3sp9,.(x.2). (11)
Oe(x,2) = [0, + 9, exply,) exp(—kx)|AH(2:2;. 2p),
(12)
where
ke =1+ i)y, @ = H{Q + 74) = kych. (13)

In many cases the signal from the photodetector is
measured by means of a lock-in amplifier. Then in




Eq. (12) the constant component 6§, can be omitted.
Such a situation will be examined below.

B. Corrections to Ray Trajectories, to the Eikonal, and to
Ray Amplitudes in a Probing Beam

Corrections to rays trajectories in the first order of
perturbation calculus are determined by the relation
(16]

- [ )4 Vulol))dr

0

(14)

Here #(') is the ray trajectories in a nondisturbed
beam equation [Eqs. (7)]. Because of this the correc-
tions are as follows:

xy = spdy ——exple,)

L’,q

{ [1 kg& WTTP—)} exp {—kgft_f(l - Ltir‘”)]
{3 IC

S

/ —a:)]
—{1—%g”m“ﬂ%em{:mc(l'”””)l
J JJ

ZRe ZRe
(15a)
y1 =0, (15b)
2 = S'[“qg ; ’IOCXP('?’J‘J
V 1+ (&% +9?)/2q,

{ T —17) €Xp Lk,, £ (1 +mutf)]
ZRe

—[r—fp)exp[ kgw(l + ”f“rp)”. (15¢)
ot ({4

In Egs. (15) the following designations were used:
7= r(q) and 7, = 7(z,). These for mulas are true in
the region 7 > t,, that is, behind the sample.

The correction to the eikonal in the applied pertur-
bation calculus is described by the formula [16]

1
(& a) = - [y(?"(r'))dz".

0

(16)

The integration here should take place along the cor-
rected ray trajectory. However, the corrections (15) to
the ray trajectory are plopmtlrmal to the perturba-
tion parameter s7-9,, like the medium electric per-
mittivity disturbance r. In that case taking into
consideration in Eq. (16) corrections to the ray trajec-
tory would also mean taking into consideration in
calculations corrections of at least second order rela-
tive to the disturbance parameter, which on that le-
vel of accuracy is not justified. In that case, if in Eq.

(16) we take into consideration the dependence
[Eq. (7)] in the region 7 2 7, we obtain
+inorp)}
ZRe

(17)

. in
l,'!l(n.f‘I].T):ST'Sg exp(q:,]fexp[ kg(E(
ge

_exp[ legeS (1 - L‘:T)] }

The ray amplitude is described by the second for-
mula given in Eq. (5). Within the confines of the first
order accuracy relative to the disturbance parameter
and without paraxial corrections, which for the
Gaussian beam are considered only in its eikonal,
we can write the Jacobian of the transition from
ray to Cartesian coordinates in the form

oxg Yo azl
IS o ot

0xg dyg 029 | 01 O¥p 9Zg
n ag Iy It I Iy Ot
= D%z) + D'(v),

D)=
(18)

where x;, yg, and 2z, are described in Egs. (7), and x,
and z; in Eqgs. (15). This gives us

A(r) 2 A%0)[1 + al(1)].
= =1 {axlzahazl,’af (19)
alnf ac, aZD/aI’

where A%(7)
and

= Eyzp./(zg. + ingt) results from Eq. (6)

mnrp)]

al(7) :%STS e‘{p(rfr!){ap(rle\p[ —Rge (

-aj(7) exp[ Bt ( m””)] } (20)
22
e
k.&c‘.: (1 = i)
[}IEL- (1 e IZ;T,.) mU(ZrR—- 7,)
. (km ( - nole = 2%) 21”) +2,)],r =1p. (21)
ZRe [

C. Inverse Problem of Geometric Optics

The obtained expressions enable us to describe the
electric field intensity distribution in a probing beam
after interaction with a thermal wave but relative to
the ray coordinates:

u(é, ) = A%7)
x exp{iko[y”

1 +al(r)]

(Enmt)+ytEn ]}l (22)
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where on the basis of Eq. (6) we have

0. 2 4P ag,
w2(E.n,7t) =ng|(ngr=L) +1 —1.
22R ZR

(23)

In order to determine the light intensity distribution
in the place of detection F'p = (xp.yp.2p) we need to
solve the so-called geometric optics inverse problem,
that is, to express the ray coordinates by the detec-
tion point Cartesian coordinates. In that case the
following system of equations should be solved:

xp = xolép.p.tp) +x1(Ep.p- D)
¥p =Yolép.yp-7p) .
zp = zo(ép.ip-Tp) +21(Ep-1ip. Tp)

(24)

where nondisturbed coordinates are described by
Egs. (7) and corrections to ray trajectories are de-
seribed in Egs. (15). That is, a system of nonlinear
equations and its solutions should be looked for after
the linearization with the first order accuracy rela-
tive to perturbation parameter and paraxial correc-
tions. In that case it should be assumed that

x1(Ep-np-tp) = x1{§po-Npo- Tno) = ¥10;

zy(Sp-1p-TD) = z1(Epo- Do TDo) = 210 (25)

and that

&p = Epo +E€p. tp = Tpo + T;-(26)

ilp = ilpo +1p1-

where &, 71p, and 7o are the solutions of Egs. (7) in
the detection point. In addition, [&pil << |Epols
i1l <€ lnpol, and |7py| <€ [rpo| must also be valid.
In that case the solution of the system of equations
takes the form of

xpep .. 1 R
“ﬂ#-"lt)_},f(l "f‘i’%—ﬂﬁ)zlo

Tni =
DY =ity Zhp 2RD,
| YDYDENZE o L fYDERe (
(11 R e A S e il [ (27
b RO
2
foy &2 =R | 1§ P D |y + 0
Sl = =50 i 510 HES TR

where zpp = 2z +izp. As has already been men-
tioned, paraxial corrections in these expressions
should be taken into account while calculating the
eikonal, but they can be omitted when calculating
the ray amplitude.

D. Probing Beam Light Intensity Distribution on the
Detector Plane

After Egs. (26) and (27) have been substituted to the
formula of the probing beam eikonal after its inter-
action with the thermal wave it turns out that all cor-
rections compensate for one another, and in the end
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we get the nondisturbed beam’s eikonal:

w(&p.n. ) = w(Epip.tp) = w(Epo-Mpo- Tpo)

.1‘2 i \’2
= l,lluofli:n] = N()(ZD —L} + ifln—DJ_
ZZRD
(28)

This is a specific situation in the perturbation cal-
culus for geometric optics. It results from special
characteristics of thermal waves, and especially from
the fact that the damping coefficient of these waves
equals their wavenumber. Corresponding changes in
the investigated beam eikonal may appear in the sec-
ond order of perturbation calculus. It results from
Eq. (28) that the Gaussian probing beam, after pas-
sing a thermal wave field in the investigated config-
uration, still is a Gaussian beam. However, its
amplitude distribution differs from a corresponding
distribution of a nondisturbed beam. By substituting
Egs. (26) and (27) into Eqgs. (19) and (20) we get

A(Rp) 2= Eo 2R 11 + apy (7p)). 29
- D))
ZRD
ap(Fp) = srdy ———exp(¢;)
: Sk, alzbs
z
a} (Fp) exp (—kgt.xnﬁ
2RD
—a} (i) exp (—kmxg jﬂ)] (30)
RD
where
al(Fp) = kg.lehp - 22re(2rD — 2R VD
+ zpplkz.zrp2R (2RD — 2Re) — 2(2RD - zp.))xh
-+ kgczjfs{]){zRU = 221",.}.‘:“ == 2‘2}‘?.[)‘]‘ = lp (31)

In addition zp, = zp. — iz, 7 =1, p.

Light intensity  in the probing beam on the detee-
tor is proportional to [u|?. When we take into consid-
eration that |ap,| < 1, we get

I(Fp) = Igo(Fp) + 2Re(ap: (Fp) M ao(Tp)

= Igo(¥p) + Iv(ip). (32)

where I;, means the light intensity distribution in
the nondisturbed beam. Here an important meaning
has the component /y, which includes information
about a thermal wave influence on the probing beam.
This component is proportional to |exp(¢,)|, which
means that the light intensity is modulated with
the frequency of the temperature field in thermal




wave modulation. Thanks to this, this component can
be easily measured using the lock-in amplifier.

4. Photodeflection Signal

After passing the region of an interaction with a
thermal wave, the probing beam falls on the
photodetector located perpendicular to the probing
nondisturbed beam axis. Usually, a quadrant photo-
diode or a centroid photodiode is used as a detector.
The photodiode changes the light signal into an
electric signal. Generally probing rays undergo de-
flection in planes XZ and YZ as well, which are nor-
mal and parallel to the sample surface, respectively.
In the first case the detector measure is the so-called
normal photodeflection signal, and in the second case
it is the tangential (or transverse) one. In the consid-
ered case only the probing beam deflection in the XZ
plane is possible [see the correction to the ray trajec-
tories in Eqs. (15)], so that only the normal phodode-
tlection signal can be detected.

A. Quadrant Photodiode

The current signal from the quadrant diode can be
written as

Fa) ZF’W Lﬁtl{q /IV ]1) dSD

Sp.

(33)

where integration takes place on adequate active (il-
luminated) parts of the photodiode surface (in the
case of quadrant photodiode on the illuminated parts
ofits quadrants or halves) and the obtained currents
are added or subtracted electronically (5; = £1). K,
means the detector’s sensitivity. In that case the nor-
mal photodeflection signal, on the basis of Eq. {(33),
can be written as

e

B = /dJ'D(/
: 0

—3

0
/)(].\.DIV fD)

h})

|0

= ZI{qRe { / Sgll(.tujﬂ‘-ul (xD-ZU.:'IGﬂ.‘r (.'I'D_](l.l'u 3
~hp
(34)

where it was taken into account that the sample par-
tially screens one of the detector’s halves [in the
region (-e.-hp), sgn(xp)=-1 for xp <0 and
sgn{xp) = 1 for xp > 0]. Other limits of the integra-
tion were moved to +e because of the fast disappear-
ance of the light intensity in the (Gaussian beam
along with the distance from its axis. In addition it
was assumed that the center of the detector is on
the axis of the nondisturbed probing beam. Integrat-
ing on yp, is elementary because ap; does not depend
on yp:

Igolxp) = / Igo(Fp)dyp

-
o

; —(x2 +y2)
= IOD / exp {(—Dbz_‘\_‘g_} dyl)
: D

(35)

Here bp is the intensity radius of the nondisturbed
probing beam on the detector, bp = by[l+
(zp —L)/zp?]'/2, where b, is the intensity radius of
the probing beam in its waist. Besides, Ij is the light
intensity on the axis of the nondisturbed probing
beam, which falls on the detector, and Pg is this
beam’s power.

B. Centroid Photodiode

Thanks to the adequate construction the normal
photodeflectional signal from the centroidal photo-
diode for the assumed interaction geometry is de-
scribed by the formula (see [19])

IPILI I{ ["DI‘- ?D)dSD
S

—=2

:2KcRel/IDﬂm(-TD-ZD)IGOx(-‘-'D}dIn . (36)

i D

where it was taken into consideration once again
that in the investigated configuration ap; does not
depend on yp. In some works the function Igo(xp.
vp = 0) is used instead of function /. (xp), which
is equivalent to the formula above but with another
detector’s sensitivity K.

C. Final Signal

The integration in Eq. (36) was fulfilled exactly (ana-
lytically) in one case: the lack of detector screening
(hp — =). In other cases, while calculating integrals
(34) and (36) approximate methods were used. Ex-
pansion of the adequate expressions into series en-
sured sufficient accuracy. After having done the
already mentioned integrations, expressions for a
photodeflection normal signal are obtained. In every
case this signal has the form

FP = KP'Re[8,(6)f )
(p) = (q). (¢),

(zD 21,2, 0.0y Q. by L},
(37)

where K is the apparatus constant, 9,(¢) =

9, expli(Qf + 74)] 1s L‘he sample surface (complex)

temperature, and fay can be called the apparatus

function (system sensitivity) of the expeﬁmental set-

rp (also complex). In Appendix A expressions for
(hD — o) are given.
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The knowledge of an apparatus function makes it
possible to analyze the influence of various elements
of the experimental setup on the measured signal.
The influence of some parameters is well known,
for example, screening the influence of the beam'’s
height over sample & [20], as long as detector curtain-
ing by the sample is not taken into account. This de-
pendence has an exponential form resulting from the
thermal wave dumping. The influence of other para-
meters is less examined in the literature, not count-
ing earlier works where the complex geometric optics
method was used (see, for example, [13]).

The results of simulation calculations of the depen-
dence of apparatus complex function f,, on various
parameters of the experimental setup are shown be-
low. Standard quantities taken for the calculations
were as follows: z; = 0.5m, z, = 0.505m, L =0.5m;
zp = 15m, bg = 50um, f = 100 Hz (modulation fre-
quency). If any of these values was a parameter n
the calculations, then its changes were taken in
the following sequences: by —50.100.200. 400.
800, ...um; f—100.200,400,800,1600,... Hz; 2~
0.0.0.25.0.50.0.75,1.00. 1.25 m. Moreover it was
assumed at this point that in all calculations
Iop = const.

An apparatus function dependence on the sample
position z; relative to the probing beam waist L and
to the detector positions zp is very interesting. This
dependence is shown in Fig. 2, in the left column for
the quadrant photodiode and in the right for the cen-
troid one (in both cases without screening it was as-
sumed that the probing beam axis height over the
sample surface i = 2b,, where b; is the probing beam
radius over the sample). It can be observed that the
signal quickly vanishes when the sample is placed
far from the probing beam waist (before or after this
waist). This is due to the fact that when the sample is
moved away from that waist the probing beam radius
b, is increased and the probing beam height over the
sample needs to be increased too, for the reason that
the sample cannot screen the probing beam. Next,
because of large attenuation of a thermal wave with
increasing h, the signal quickly vanishes. Moreover,
from these graphs results, for narrow probing beams
and for low frequency thermal field modulations it is
extremely unfavorable when the sample 1s placed in
the region of the probing beam waist, because in that
case the apparatus function amplitude reaches its lo-
cal minimum. Occurrence of these minima results
from the fact that in the considered configuration
the deflection part of a signal becomes insignificant.
Most rays in the probing beam in the waist region
run nearly parallel to one another and to the sample
surface. Because the probing beam is narrow in com-
parison to the thermal wave length, rays undergo
comparable deflection (in the beam waist area the re-
fractive index gradient is almost constant) and it
does not influence the probing beam divergence sig-
nificantly. This minimum is quite narrow, which
causes the apparatus function amplitude to be a
quick-changing function in this region. This means
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that all instabilities of the relative position of the
sample and the probing beam waist can significantly
influence the measurement accuracy. It should be
noted that the practice of locating the probing beam
waist over the sample is quite common especially
when a simple theory [1] is used to analyze photode-
flection signals.

FFrom the plots presented in Fig. 2, one can see the
result that in the discussed ranges of the probing
beam radii and thermal field modulation frequencies
the apparatus function amplitude for both detectors
reaches its maxima for the sample positions before as
well as after the probing beam waist location. How-
ever, the favorable sample positions are before the
probing beam waist for the quadrant diode and after
this waist for the centroidal one. Of course this is only
a qualitative suggestion but physically justified.
From the comparison of formulas (34) and (36) it fol-
lows that normal signals are different in weighting
function, which arises with amplitudinal correction
apy; for the quadrant diode it is sgn(xpigoclxp)
and for the centroid diode it is xpIgo, (¥p). This means
that in the case of the centroid diode greater impor-
tance is attached to rays deflecting from the probing
beam axis, and there are more such rays if the sam-
ple is in the probing beam divergence area that is be-
hind its waist. In the case of the quadrant diode the
situation is the opposite—relatively greater impor-
tance is attached to the rays running close to the
probing beam axis. And there are more such rays
when the sample is in the probing beam convergence
area that is before its waist. These differences result
in such choice of the sample optimal position in rela-
tion to probing beam waist.

From Fig. 2 it can be additionally noted that the
apparatus function amplitude depends also on the
probing beam radius bo. More detailed analysis
about this dependency was carried out in Figs. 3
and 4. Similarly to what occurred previously, it
was assumed that the sample does not screen the
probing beam (h = 2b,). It is visible that for both de-
tectors these dependencies are very similar—some
differences appear only for relative narrow probing
beams (by < py, Where p, = 2x/k, is the thermal
wave length). In the investigated parameter value
range, all the presented curves reach their maximal
values, which corresponds to optimal values by of
the probing beam radii. Optimal probing beam radii
obtained in this manner are presented in Fig. 4. Asit
is seen these values do not depend importantly on
probing beam waist position L (see the upper row
of Fig. 4) and generally for a centroid diode are great-
er than for quadrant one and depend on sample posi-
tion 2; (see the bottom row of Fig. 4). It should be
emphasized that the obtained optimal beam radit
bope are relatively big—they are inside the range
from nearly 200 to 700 gm. This is much greater than
is used in standard experiments (e.g., [14,19]).

The normal photodeflection signal dependence on
probing beam height /2 over the sample surface is very
well known. In Figs. 2 and 3 this dependence is




manifested as an exponential decrease of the appara-
tus function amplitude with increasing probing beam
diameter over the sample (2 = 2b,). Taking into ac-
count that the Gaussian beam after interaction with

In(|f,, <))
0 - 2 by =50 pm
2 © Miafilen
TR o (Hz]
4 o b - 100
L\ [] 200
-6 -
run % O- 400
8 - o @ e A 800
I A W\ R
40 Lf | ] AR -/ 1600
3 ! \h @ o
12
‘_\J
14 LA o
46 s r " . Z7p
0 0.2 0.4 0.6 0.8 1
In(/f.,‘ ") b, =100 pm
i o0 / H7)
s BP0, “S- 100
a tﬁs"?@“ i [] 200
P o { ‘F' 3 P O* 400
o i 2 Yo /- 800
5 4 ] b V- 1600
-8 < A \ O
\ '..‘ o
\\ %
-10
2 o
12 & = :."/ZD
0 0.2 0.4 0.6 0.8 1
In(|f,,)
0 o by =200 um
Ea 0{_‘—0%%‘ N
-2 o 5 S @ﬁ%q; &
v TR
4 o & Ao >
6 A i\
s [ fHg N
8 v -5 100 o
N - 200
400
12 - A~ 800 9
14 — Vv 1600 -
'16 ZJ/ZD
0 0.2 0.4 0.6 0.8 1
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the thermal wave in the Raman-Nath configuration
still remains Gaussian, it is possible to express prob-
ing beam cutting by a sample on the detector plane by

the formulas
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cies f and for different probing beam waist positions L. Left column, quadrant diode; right column, centroid diode (zp
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Here, the sample middle position is denoted by z.. of
course, in this formulation any diffraction effects on
the sample edges are omitted. Results of calculations
arve presented in Fig. 5. Inall cases the minimal height
of the probing beam axis over the sample surface was
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1.5m, Az - 5mm).

assumed as hy;, = 0.05by (here by = b,, because it
was simultaneously assumed that z; =L, which
means thatin nearly all the experiments this assump-
tion is fulfilled). As it is seen, when the probing beam
height h over the sample sur{ace increases the appa-
ratus function amplitude first decreases, reaches its
local minimum, next increases and reaches its maxi-
mal value, and finally decreases exponentially. It can
be assumed that this maximal value of the apparatus
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bottom row it is elear that they depend on sample position 2.

function is reached for the optimal value of the prob-
ing beam height over the sample. Values of /., ob-
tained in this manner are presented in Fig. 6.
Generally it can be ascertained that the obtained
optimal heights of the probing beam over the sample
surface are greater for the centroid diode than for the
quadrant diode (analogously to the calculated probing
beam optimal radii). Moreover, In most cases the ob-
tained /1, values for given probing beams are greater
then their radii by—for narrow beams (by < 100m)

and for low modulation frequencies nearly two times.
This means that in this situation the probing beam
sereening by sample is rather unimportant. However,
in Fig. 5 it is seen that for these parameters and for
very low heights of the probing beam over the sample
the apparatus function amplitude reaches values
greater then its maximal value in the last maximum.
But this region is rather unprofitable because of the
apparatus function’s quick changeability, which can
influence measurement accuracy. From Fig. 6itisalso

seen that probing beam screening is not important for
large probing beams interacting with thermal fields
modulated at higher frequencies. In other cases the
obtained h,, values lie in probing beam screening
regions.

5. Summary

We have analyzed an optical Gaussian beam interac-
tion with a one-dimensional thermal wave in Ra-
man-Nath configuration, in which we deal with a
so-called normal photodeflection signal. For the de-
scription of that interaction the complex geometric
optics methods and perturbation calculus was used.
The phase, deflection, refractive, and amplitude
corrections to the Gaussian optical beam rays were
caleulated. It was shown that for Gaussian beam
eikonal all corrections mutually compensate, which
means that probing beam after interaction with
the thermal wave still stays Gaussian, but its inten-
sity distribution is changed. The probing beam inten-
sity distribution and “position” measurement was

1 March 2009 / Vol. 48, No. 7 / APPLIED OPTICS Ci1




In(|£, )
3 . b, =50 um
t,
A ‘v v
jﬁ\é 4
-4 @ v
Lo, 2 f [Hz)
o S -&— 100
R N\ & 200
'00 B o A - 400
o 8w, A 80
8 - LA R . v ¥ 1600
@ o 3 b © B ] ¥4
qp 4 Am BN N hipg
0 04 08 1.2 16
In(|£,,”D
ol o= 100 pum
\J"v o
L% [ Hz)
\ _g--ga-é v S 100
* 8% W +1 200
e a
& . o " v . G 400
6 00 m O A oy -A* 800
5 & e A 7@ 1600
& @) : o A
-8 e @ AW
@ E“ = © : N v
=3 o W
10 e T—Q—DE .- W h/j.lg
0 0.4 08 1.2 16
In()f, )
‘ . /(17
5 b, =200 pm S 100
. \?AV*V LS B 200
L Dte, Ve O w0
’?*.L'O ; - - ] C w160
] | a v
6 ' & © O v
[0 O] (0] Py -
< = " A
-8 o = A
o wn® A
o 5 e A
10 , PR hj“g
0 0.4 0.8 1.2 1.6

Fig. 5. Dependence of the apparatus function amplitude on the probing be
am radii by in the beam waist. Le

frequencies f and for different probing be
(zp  15m, Az =5mm, L - 0.5m, z; — 0.5m).

analyzed for two types of detector, a quadrant photo-
diode and a centroid one. Apparatus functions for the
measurement setup for both detectors and for two
cases, with and without probing beam screening,
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am height i over the sample surface for different modulation
ft column, quadrant diode: right column, centroid diode

were obtained. The apparatus functions’ dependen-
cies on the sample position (for different probing
beam waist locations), on the probing beam diameter,
and on the probing beam height over the sample
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Fig. 6. Optimal probing beam heights /i,y obtained on the base of maxima observed in Fig. 5. Left column, quadrant diode: right column,

centroidal diode.

were analyzed in detail. It was ascertained that the
sample positioning in the probing beam waist region
in most cases is unprofitable. It was proved that fa-
vorable sample positions are before the probing beam
waist location for the quadrant diode and after this
waist location for the centroid one (for the analyzed
values of experimental setup parameters). The opti-
mal values of the probing beam radii and the probing
beam heights over the sample surface were deter-
mined as well. It was shown that most often the cal-
culated probing beam optimal radii are greater than
that traditionally used in experiments and that often
the probing beam heights lay in the region of probing
beam curtaining by the sample.

Appendix A

The expression for the apparatus function defined in
Eq. (37) for the experimental setup presented in
Fig. 1 with the centroid diode as the detector and
without screening of the probing beam is

fi bl .
—exp| %22,

{e)

nexp(—fkyh) [

ap — :
Algezip 425
fP b%kgc 2
- exp( 222 ) +fu- Al
Tl S\ e, e ) Tl (A1)

where
fr = bykizp 25y — 22pp2Re + 22Rc2Rr)
+ 2b%23 p k2 zrpzre (2rD — 2Rr) + 2(2RD — ZRe)
4—83'?“_,]; r=1p, (A2)
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4 oA
W s
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Iy = [ 9/ (2x).
(A6)

2p = kongb?.
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