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Complex geometrical optics application
to the gaussian light beam Raman-Nath diffraction description
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Institute of Physics, Silesian Technical University, ul. Krzywoustego 2, 44-100 Gliwice, Poland

ABSTRACT

The description of the ganssian light beam diffraction on the planar ultrasound wave in Raman-Nath region by complex
~ optical rays method is presented in this works. The case of the perpendicular light beam incidence (i.e. its axis) relatively to
the direction of propagation of the ultrasound beam of Az width was considered. The influence of such parameters as a size
and position of the gaussian beam waist, a laser-screen (detector) distance, a position of the ultrasound beam and Raman-
Nath parameter value on diffraction pattern was analysed. That was proved that in some cases the diffraction beams have
a fine structure. The final analytical formulas were illustrated by some graphs of the light intensity distributions in beams
diffracted on ultrasound waves propagated in water.

Keywords: Raman-Nath  diffraction, coﬁxplex geometrical optics, gaussian light beams, geometrical optics of
nonhomogeneous media, perturbation calculus.

1. INTRODUCTION

Light beams with the gaussian profile of the light intensity distribution are widely applied in scientific and commercial
devices. It is caused by their unique properties, in which are small angular divergence, stability, disturbances missing in
many optical sysiems. Because of that properties the theoretical description of the gaussian beams propagation is relatively
simple.

When the gaussian beam is propagated in optically nonhomogeneous medium the situation is more complicated. I that
case the intensity distribution in beam profile can undergo essential change. These changes contain an information, which
may be very important. This situation we have, e.g., in acoustooptical interactions or in photothermal investigations with
photodeflectional detection (mirage effect).

The full description of the gaussian beam propagation in that conditions need the wave optics law applications, i.e. the
appropriate wave equation solution. In many cases the exact solutions of that equation are unknown. In this situation
approximative methods become very important. For acoustooptical interactions many effective methods for wave equation
approximate solution were worked out, especially for different particular cases, as e.g. Raman-Nath interaction or Bragg
interaction. These methods went into acoustooptics theoretical grounds and it may be found in many school-books™ % ?. Tt
must be marked that these methods are mathematically complicated in general, especially when they are used for the
description of wave beams with complex amplitude and phase distributions interaction.

Mentioned above approximative methods for acoustooptics wave equations solutions were applied already in first works
on this topic, e.g.* °. Independently of that at initial stage of acoustooptics evolution the geometrical optics methods were
used 0o, e.g, in one of the first work®. That work and another ones similar to that are discussed in books™*. Because of wave
theory successes the geometrical optics methods were forgotten for many years. But in last years an important progress in
geometrical optics was atained. Thanks to that these methods become competitive relatively to “exact” wave optics methods,
especially for problems, in which approximative methods for wave equation solution are nsed (because of different reasons).

In present work, geometrical optics method for Raman-Nath acoustooptical interaction description was used. In first part
of that work the geometrical optics fundamental equations™** " for homogeneous and nonkiomogeneous media are discussed.

Next, these equations are used for gaussian beam propagation description in medium disturbed by the plane ultrasound wave
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for the case when both waves run perpendicularly each other. Obtained results are illustrated graphically for the case when
considered acoustooptical interaction happens in water. '

2. GEOMETRICAL OPTICS EQUATIONS

The information about light intensity distribution in monochromatic beam with angular frequency @ propagated in given
medium in the Helmholtz equation is contained (with appropriate boundary conditions):

2l )+r26Fpf)=0, m
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ko:—c-, f:(r):n2 (r) ¥)
In these equations are used followed marks: ¢ = light velocity in space; £= #” dielectric constant and refraction coefficient of

the medium. The fundamental solutions of the equation (1) for the homogeneous medium with refraction coefficient 71, are
very well known. For example, the solution in the plane wave form may be written as

u(F)=d4e ¥ O ¥ (F)=kyn,r oe, 3)
where e, denote an unit vector in the wave propagation direction.

where

In general case (any wave, any medium) Eqn. (1) sclutions are looked for in the shape s
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The above wave amplitude expansion on “partial amplitudes” is called Debye expansion or Luneburg-Klein expansion. The
series (5) convergence is the faster as the wave number &, is bigger. After assumed solution substitution fo Helmholtz eqn. (1)
we obtain the set of differential equations for 4,, amplitudes:
pylien
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where

m-1

The first equation from that set is called as eikonal equation, and other ones are called as transport equation of zero, first and
S0 on order.

The boundary conditions for Helmholtz equation have a shape of wave amplitude value » = uo(f,‘ 7)) distribution given on
some surface O defined e.g. by the parametric equation
r=r'(.n), ™
where & and 77 denoted the coordinates on the surface O (generally curvilinear). In order to transfer that conditions on the
geometrical optics ground the function #°(& 7) must be expanded on Debye series:
- A ) ik
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From that:
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2.1. General solution of the geometrical optics equations
The eikonal equation solution with initial condition (9) can be written as
vE)=vo )+ [nt @k, (10)
0

where integration is carried out along the characteristics curve of the eikonal equation which is the ray trajectory. The
variable  is the current variable along the ray. The equations for the ray can be written in hamiltonian shape
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From last equations arise the initial conditions for the rays:

P, = Vv 6 €C.n) 13)

from two components of the initial ray “momentum” started from point 7° are calculated. The third component is calculated
from the second equation of the set (12) (i.e. eikonal equation):

() =n2°). (14)

In order to completing of above solutions we must calculate yet the change of the partial amplitudes along the ray. The
appropriate expression for zero order amplitude has a shape

»
4,(r)=A4, (0)[1—2%] . (15)
where :
S0y z)
it R (16

is the jakobian for the transition from cartesian coordinates (¥, y, z) to curvilinear coordinates (&, 7, 7). The solutions for the
higher order transport equations are known too, but in this work they are not explored.

2.2. Perturbation calculus for ray equation

How can be seen from the previous section the general solutions of the geometrical optics equations are well known, but
the appropriate integral calculations in general case may be very difficult or may be lead to very complicated expressions. In
this situation the approximative calculations methods are acquired a big importance. When we have

7 ()= E)+ )= )= )+ k) an

then eikonal and rays equations take the shape y
("77’): =iy s =%5n§ (F)+%€7v(F). : 19

()
dtz
When the disturbance is small, i.e.

)| << &) 18)
then considered solutions are looked for in the shape
F(2) =7y (D) +1 (D) + 1y (D +..., (20)
where the ray trajectory in undisturbed medium is given by equation
' 1526y
o b ). V3))

For the first order correction we can write
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&2
and after the expansion fulfilment - 2‘
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we obtain the equation for correction to 12y trajectory in the shape

(r,) +’1)““V”o(’o +’1)+;VV("0 +r,) (22)

i LEebmep L9vG). 4)
After the solution of this equatmn we calculaie cikonal:
v )=y (e, n)+j[ Gor7 v o e 25)

Asit 1s seen, the integration is carned out along the corrected ray trajectory. In simpler version, whcn the correction to the
% ' 3 as

‘wave ampﬁmde by jakobian calculation thh éppropnate iccuracy
i
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3. DESCRIPTION OF THE GAUSSIAN BEAM PROPAGATION
3.1. Gaussian beam in homogeneous medium
In accordance with the theory given in Sect. 2 the initial condition must be given and adequate equations must be sotved.

The characteristic place in gaussian beam is the waist, in which the light wave has the plane wave shape and its amphtude
dlstnbunon by Gauss function is descnbed. Assuming that the waist is in the plane z =0 we can write:

U (x,y)=E, exi)[— (x +y )lZa o 27
where a denote the gaussian beam radius (for the light intensity), and £y denote the electric field mtensxty in the beam centre.
The Debye series for that function is very easy to obtain:
uy (x,y)=E, exp [lk((x +y )/ 2a2k] (28)
ie
WO=kp,, po=ilc*+y?)I2ka’. @9
Assuming that the ray start point coordinates from plane z = 0 are

r=len0], @30)
(where &£ and 7 are the cartesian coordinates of that point which are cover its x and y coordinates) we can calculate the initial
ray “momentum” components on that plane:

- ; & in -
P0=VV/0©[P01 e Do, = o (31)

The third component of that ray “momentum” in the homogeneous medium with refraction coefficient r, is calculated
from equation (cf. Eqn. (14)):

ns) 12
(o) =pl+pi,+pl=n?, 32)
ie.

Pos=E nd *(‘k;—)z (33) ’

The sign is selected relatively to the direction of beam propagation — in considered case was assumed that the wave
propagates in positive direction of the z axis (sing +).

In this situation the Egs. (11) solqtions are
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P=p,=const , (34

X(r)=s‘+klaizfa y(2)= 77+ko:7Z r, z(o)=cni+(2+n? ) (ka?f 35)

The integration of the eikonal Eqn. (10) is very simple. We obtain (cf. Eqn. (28)):
s 5 2 i 77 2
o

2ka’
Regarding that for the near-axis rays we can write next approximations
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we obtain the final formula for the eikonal:

and

Y@=y enle, yO= (36)

-1
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(wor and gy denotes the real and imaginary parts of y). In order to determine the wave amplitude change along the ray we
must calculate the jakobian for transition between (x, y, z) and (¢, n, 7) variables. In the frame of assumed approximations the
essential elements of matrix (16) are

iz iz 5 +7?
D, =1+ , D, =l+—Fn— = 40)
& ka 2”0 n ka2n0 (ka )z

and it gives in accordance with Eqn. (15)

-1
iz
A=l 1+ A
{+55) @
In this situation in zero order approximation on the base of Debye series we obtain
, 4 3, 3 : 4
iz . x“+y iz
u(x,y,2)=E,| 14+—— ikn  z— H+— b 42
i) D( kaznoj expi: 7 24’ ( kazno) } )

That expression describes the wave amplitude distribution in the gaussian beam obtained in the geometrical optics frame. It
needs emphasis that this expression is fully equivalent to that one obtained by the wave equation solution in near-axis
approximation (cf. for example'?). Obtained expression has a simple physical interpretation' - it is presented the spherical
wave with its source putted in complex point. This expression is in good agreement with that one from the work™. At the end
it needs noticing, that expression (46) can be easy generalised for the case when gaussian beam started from the plane z =0
and have their waist in the plane z = L — it needs only substitution z — (z - L).

3.2. Gaussian beam in homogeneous medium disturbed by ultrasound wave

Let’s consider the experimental setup presented at Fig. 1. It is a schematic diagram of the standard setup for the Raman-
Nath diffraction investigation. The plane, longitudinal and damped ultrasound wave is propagated in the medium, and the
. light beam is incident on it at the right angle. The gaussian light beam is emitted by laser and is formed by adequate optical
system. The acoustooptical interaction result is observed on the screen or measured by an appropriate detector, e.g.
photomultiplier.

The damped ultrasound wave with angular frequency (2 is cansed in the medium the small harmonics changes with
. amplitude An in refraction coeﬁﬁcxent and respectively to that the dielectric constant changes can be written in the shape
v(r 1)=2n o Anexp(-a(x+h))cosll, (x+h) - Q1 + &), “3)
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Figure 1. The experimental setup scheme for gaussian light beam Raman-Nath diffraction on plane ultrasound wave
investigation. The ultrasound beam has the wide Az and its left edge is at distance z; from the reference system centre
(putted in the light beam “input”). We assume that the ultrasound width along the OY axis is many times greater then
the light beam width. The light beam waist have the radius @ and is at distance L from their “input”.
The screen (or the detector) is at distance zp from the “input”.

where « is the aconstic wave attenuation coefficient and k, its wave number. In Raman-Nath diffraction analysis traditionally
is assumed, that acoustic wave is generated the phase diffraction grating. In this situation we can neglect the light rays
curving and appropriate integrals in perturbation calculus can be calculated along the undisturbed gaussian beam rays. The
first correction to eikonal is given by expression

)= j:v(?(r'))a'r& jv(?(r‘))dr‘, 1=z, 7, =(g+4&)n,, (44)

0
where

/ & 5
W@)=v(xo), *@)=x L1+ i j / (1#2&} =xp (D) +ix, (¢), ac =ka'n,.
ﬂc ac (45)

In (44) we have an elementary integral but because of it properties (and very enlargement shape too) we can use the
approximative integration by middle point method, which gives
= 1 g . 1
v (rD)EE(VR @) +iv, (E)AT =y +iyy, T, =E(r, +z'p) dr=1,-7,=L2fn, , (46)
where l

Val£,)= Ve, 08By +B.)s Vg, =21y Mnexpl-alxy (rs)+h)){cos2 (o, (z,))+sh* (B, )]Ar, ’
Be =k, (ke (r,)+h)-Q1+®, B, =kx,(z,), tgB, =gl (z,))h(B,) @7

and ’
Vi(£,) ==V, sin(By + B,), vy, = 2nydnexpl- alxy(z,)+ h))[sin2 (om,(z))+ shl(ﬂl)]z]r,
tg6, =g, ))cth(B;). B

Moreover, with accordance to accepted approximations we can assume, that the field amplitude in given ray do not undergo
any essential changes, i.e. it is expressed by equation (41), which can be wriiten in the shape

Ay = Ay, explip,), Ay, =[(l+(ZD "L)l)/aé]»ms tgp, :(L—-ZD)/ac - 49)
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In this situation the light beam electric field in detection plane is expressed by equation

u(;D ): E.4,, exp(— k(yo; +wy; ))exP(ik('/’uR +¥ir)tig, )’ (50)
and additionally
: .1 ‘ & 1 :
expliky )= exp[z 2 KV2s 0SBy + . )j = Y4t (5 kv, ] explim(B; +B.)), 1)

where J, denote the first type Bessel function of order 7. In last formula the “classical” series extension was applied, which
is used in traditional Raman-Nath diffraction analysis too. Physically this extension denotes, that the light beam interacted
with acoustics wave decompose on unlimited quantity of the diffracted beams. From the S shape results, that the m order
diffracted beam propagate under angle ¢, (relatively to the incident beam direction)

k 2
g e [l_} /[1_] £, £ s -
kny ac ac

It can be seen, that the diffraction angles depend on the diffraction (z,) and detection (zp) places position. In many situations
this dependence can be neglected. Diffracted beams have the shifted angular frequency by the value Ac,=m£2 and they have
the additional phase shift A®,=m(k;+®+f+n/2). Taking into account, that the acoustic wave frequency is more less then
the light wave frequency we can calculate the diffracted beam intensity as

Iy = %!"D[zguu Z%Eozgo’JAgaJZ. (‘;‘k"kn)exlf’(_ 2y, +V’11)) (53)
(& is the free space permittivity and v is the light wave velocity in the medium). Because the w;; depends on time then
diffracted beam are intensity modulated. In many cases we can write

expl-kyny )= explivy, sin(By + B,))=1+kv,, sin(B, +5,), 4

what means, that the modulation occur with acoustic wave frequency. At that time the quantity kv, denote the modulation
depth. If in that conditions the dstector measure the mean light intensity (in time) then we obtain

=g 4
I, =—2~EésouA§,,J,;Gkvm)exp(—zwo,). (55)

When the detector is equipped with the slot parallel to OY axis then expression (55) must be integrated over the y variable. If
we assume, that the total power of the incident light beam is equal to P, we obtain
]' Py x5

' 1
= : Jj(~ kv, ,,)expl— , 56
" N2atmle(z, -0 a2 "\2 " 22*(1+(z, ~1)"/at) b

and additionally in most experimental situations

1
7 Fvm =g expl-alx, (e,) +h)eos? (e, e))+ B2]", ¢ =knse, 7

(¢ denote the Raman-Nath parameter). For & =0, /= 0 and the plane waves (a — o) the relation (56) is turned to very well
known one in literature?.

By the expression (56) we can analyse the influence of different experimental parameters on light intensity distribution in
diffracted beams. Final results may be illustrated graphically. Exemplary graphs of light intensity distribution in ten
following (from 0 to 9) diffraction orders on Fig. 2 is presented. It can be stated, that the diffracted beams are characterised
by some “fine” structure. It can be easy proved, that the sum of all these ten intensity distributions practically cover the light
intensity distribution in incidence beam.

At the end we must say, that all of the above results can be obtained by wave optics methods, The acoustooptical
interaction general analysis of wave beams with arbitrary amplitude and phase distributions was carried out, among other, in
works™'*. Tn work'® the Bragg type diffraction of the gaussian beam on plane acoustic wave was analysed. In that case the
fine structure presence in both diffraction orders was found.
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Figure 2. An exemplary light intensity distributions in diffracted beams of order m (from 0 to 9).
¢, pand Q denoted the Raman-Nath, Bagavantham-Rao and Klein-Cook parameter respectively.
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